
Bat-Inspired Robot Navigation
Michael J. Kuhlman
Dept. of Electrical and

Computer Systems Engineering
Rensselaer Polytechnic Institute

Troy, NY 12180
Email: kuhlmm@rpi.edu

Kate McRoberts
Dept. of Electrical and
Computer Engineering

Grove City College
Grove City, PA 16127

Email: mcrobertskm1@gcc.edu

Advisors:
T. K. Horiuchi & P. S. Krishnaprasad

Dept. of Electrical and Computer Engineering
Institute for Systems Research

University of Maryland
College Park, MD 20742

Abstract—A key objective of Robotics is the autonomous
navigation of mobile robots through an obstacle field. Inspired
by echolocating bats, we developed a two-part navigation system
consisting of obstacle detection through echolocation and motion
planning. The first part relies upon a binaural sonar system,
which emits ultrasonic pulses and then determines the interaural
level difference (ILD) of the returning echoes to infer obstacle
locations. Next, the Openspace motion planner computes the best
direction of travel based on the locations of the target and the
detected obstacles. We implemented this navigation system on a
mobile platform, which repeatedly computes the safest direction
of travel and moves accordingly, ultimately generating a real-time
path to the goal.

I. INTRODUCTION

Bats’ seemingly effortless navigation abilities have long
fascinated scientists. Imagine swiftly navigating a dense forest
at night with only mediocre vision. Echolocation makes this
possible for bats. Inspired by this navigation method, we
designed and implemented a system that enabled a robot to
exhibit obstacle avoidance using echolocation. While we were
provided with a sonar device to mimic echolocation, our chal-
lenge was to process the signal data to determine information
about the environment (such as locations of obstacles), and
use this in conjunction with the Openspace motion planning
algorithm to direct a robot’s movement, thereby developing a
path to a goal in real time.

II. ECHOLOCATION AND SOUND LOCALIZATION CUES

Using binaural sound localization to detect objects with
echolocation, information about an object location lies in the
differences between echoes in the left and right microphones.
Absolute qualities can vary greatly based on the object size,
material and geometry. Since none of this is of concern to
navigate around obstacles (we do not care whether we detect
a PVC pipe, or a wall, just as long as we can avoid it), we
opt to cross-compare channels by studying contrast and time
differences instead of absolute qualities.

The sonar system’s speaker emits a 40kHz pulse that reflects
off objects in the world, and similar but different echoes return
to the two microphones, which are angled 45 degrees. Since
the distance to the further ear is greater than that to the closer
ear, there is a time difference in which the sonar signals arrive
at the two different microphones, called the interaural time

2 4 6 8

x 10
-3

-2

0

2

Original Example Sonar Signal with envelope

2 4 6 8

x 10
-3

-5

0

5

Original Example Sonar Signal with envelope

dLeft

dRight

dobject

Microphones

Sound Reflector

θobject

dLeft < dRight

Incoming Echo
(L > R)

Fig. 1. Visualization of properties of the binaural sonar system which result
in sound localization cues.

difference (ITD). Fig. 1 demonstrates geometrically how this
difference arises.

While ITD is a very reliable metric for computing azimuth
angle for larger interaural distances (such as in human heads),
the two microphones in our sonar system and the respective
ears on bats are too close for this metric to be effective. The
overwhelming majority of bats use the Interaural level differ-
ence (ILD) to compare channels as in (1). Three phenomena
factor into ILD in varying amounts. Most microphones natu-
rally have directional filtering (sounds in the center are often
louder than sounds on the periphery). Acoustical shadowing
also occurs when lossy material (such as the head) is placed
between the two microphones/ears. This phenomenon is more
pronounced at the higher frequencies used in bat echolocation.
The aforementioned difference in distance from the micro-
phones to the sound source also contributes to variations in
ILD, since sound intensity falls off with an inverse squared

0 2 4 6
-0.5

0

0.5

1

1.5

time [ms]

a
m

p
lit

u
d

e
 [
V

]

Filtered Envelope and Peak Detection

0 2 4 6
-2

-1

0

1

2

time [ms]

a
m

p
lit

u
d

e
 [
V

]

Example Sonar Signal and Envelope

Fig. 2. Demonstration of signal processing on sample sonar signal. The sonar
board detects the envelope of the signal using an Op-Amp based circuit. This
is sent to MATLAB for filtering and peak detection for object detection.

relationship to distance of the target. The summation of these
phenomena which factor into ILD make a direct mapping from
ILD values to angles complicated, especially when using a
constant frequency pulse. For further reading on how E. Fucus
uses ILD for sound localization, please refer to [1].

ILDLR = 20 log
(L
R

)
(1)

III. SIGNAL PROCESSING AND OBSTACLE DETECTION

The sonar signal envelope peaks are salient features that
can be cross-compared across channels regardless of time
distortion due to ITD. Therefore, peak detection is the most
important feature extraction for object detection. The system
uses a 35th order FIR filter with a cutoff frequency of 10%
of the sampling frequency (i.e. normalized frequency), using
a Hamming window. Different values for the order and the
cutoff frequency of the filter do not significantly effect the
accuracy of the obstacle detection method.

Next, the system takes the derivative of the filtered envelope
and searches for sign changes (from positive to negative),
which correspond to envelope peaks, recording both peak
amplitudes and times for further analysis. This process is
summarized visually in Fig. 2 and makes peak detection a
simple, reliable metric for determining outgoing pulse and
echo locations. If multiple peaks occur for the same object,
these ambiguities will be resolved when solving for correspon-
dence. A small absolute threshold for peak detection above the
quantization error was also be used to remove peaks due to
noise.

A. Correspondence and Distance Metrics

Given left and right channel signals from the microphones,
one must deduce which echoes correspond to which real world
objects. Depending on angle, echoes will be detected in one
or two of the channels. We assume that echo peaks within 10
samples (0.3 ms at 25 kHz) of each other originate from the
same real world object.

When determining an object’s location, we decompose its
location into distance and angle relative to the sonar system.
Since the microphones pick up the initial outgoing pulse
generated by the speaker, we are able to estimate object
distance accurately; the time between the peaks of the outgoing
pulse and object echo is the time in which sound traveled to
and from the object.

B. Michelson Contrast and ILD

We can infer the azimuth angle of the object due of the
difference in peak amplitudes in the left and right channels.
This relationship is commonly encoded with (1), where L and
R are the corresponding echo peak amplitudes in the left and
right channel for a given object. However, (1) can become
complex when the inhibitory channel R = 0, which is possible
with quantization. The use of Michelson Contrast (2) as our
metric for calibration alleviated the singularities possible with
ILD. ILD and Michelson Contrast are similar in behavior.
Using series expansion of ln(z), one can obtain the first order
approximation (3) of ILD, which is similar to (2).

contrastLR =
L−R

L+R
(2)

ILDLR = 20 log
(L
R

)
≈ 80

ln(10)

(L−R

LR+ L+R+ 1

)
(3)

C. Calibration

Once we compute the angle metric for given object data,
the next step is to determine the corresponding angle. Since
the nature of sound propagation is very complex, we opt for
one-dimensional calibration instead of modeling to map metric
values to object angles. We thus constructed a calibration
data set with 140 data points with a single object ranging
from radii r = 1ft to r = 2.5ft in .25 ft intervals every 5◦

from ±45◦ from the center axis of the sonar system. After
computing the Michelson Contrast for each trial, we mapped
object angles to metric values, creating ordered pairs in the
region of monotonicity as in Fig. 3. For experimental data, one
could use (inverse) interpolation to map experimental metrics
to estimated angles. To verify the accuracy of the calibration,
we then estimated object angles in the calibration data set
using Michelson Contrast and the calibration data. 76% of all
trials estimated the object’s angle within 5◦ (i.e. one point of
resolution) of its actual angle.

−40 −20 0 20 40
−1

−0.5

0

0.5

1
Calibration Curve

angle [deg]

M
ic

he
ls

on
 C

on
tr

as
t [

V
/V

]

mean contrast
calibrated data

Fig. 3. Calibration data mapping Michelson Contrast values to angles. Only
the region of monotonicity can be calibrated, so the dashed portion of the
curve is truncated for calibration

IV. OPENSPACE

The Openspace motion planning algorithm was used as
the robot’s navigation method. One distinguishing feature of
this algorithm is that it does not require foreknowledge of
the whole environment, so it works well in real time. The
sonar based sensor system is suitable for Openspace, because
Openspace only require information about impeding obstacles.
The obstacles of concern are those that obstruct the robot’s
path according to the capabilities of the sonar device and
requirements of the mobile platform.

The Openspace evaluation function, (4) from [2] evaluates
the desirability of moving in any one direction based on
the location of the destination and the locations of impeding
obstacles. This evaluation is computed for each of a discrete
set of directions, which, in real time, is determined by hard-
ware limitations. An azimuth range and resolution define the
direction set. For example, our sonar device can properly map
ILD to azimuth angles within a range of ±25◦(with 0◦ being
straight ahead). Since our sonar system has a low resolution,
we broke up this range into one-degree intervals for a total of
51 directions.

Three terms constitute (4). The first term is a constant bias
so that all evaluations are positive. The second term is a
Gaussian centered about the direction in which the destination
is located (so the direction of the goal starts with a higher
evaluation than any other direction). Since we did not have
a global positioning system (GPS) and thus could not have
cartesian coordinates for the goal, we opted to have the
robot “wander,” forcing the goal angle θ = 0, or to drive
straight until an impeding object forces the robot to turn.
The third term is a summation of Gaussians. Each one of
these Gaussians corresponds to an impeding obstacle. Because
the third term is subtractive, each obstacle detracts from
the desirability of moving in that direction. Each obstacle

-20 -10 0 10 20
1

1.2

1.4

1.6

1.8

2

2.2

Openspace Evaluation

Azimuth Direction (degrees)

E
v
a
lu

a
ti
o
n

Fig. 4. Example evaluation function from the MATLAB simulation. Zero
degrees is the determined winner-take-all direction for this time step. The
evaluation before taking the obstacles into account is shown by the black line
above the bars. From the figure, we can see that the goal is approximately
located in the direction of −6◦. We can also see that obstacles to the left and
right of the bat suppress the evaluation.

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Openspace Simulation

X Position

Y
 P

o
s
it
io

n

Bat

Path Traveled

Goal

Obstacles

Fig. 5. MATLAB simulation of a bat navigating an obstacle field using the
Openspace evaluation. The red obstacles represent those that are of concern
to the bat and therefore affect the evaluation function.

suppresses the evaluation with strength inversely proportional
to its distance away, so closer objects create a deeper and wider
suppression. Finally, the direction with the highest evaluation
is selected as the best direction of travel, or is the winner-take-
all (WTA) selection. A path develops over repeated Openspace
evaluations and corresponding movements. Fig. 4 depicts an
example evaluation function with its selected WTA in the
environment depicted in Fig. 5.

We created a simulation of Openspace in MATLAB to
understand the algorithm and how various parameters affect
its performance. Furthermore, having a working simulation
smoothed the transition to using real-time data and eventually
a mobile platform. Fig. 5 shows a MATLAB simulation of a
bat navigating an obstacle field, such as a forest of trees, to
real its goal.

The version of the Openspace code suitable for real time
is similar to the simulation code, but much more robust. Its
inputs are the direction of the goal and the obstacle locations

(given by distance and angle from the sonar device). If no goal
is specified, it is assumed that the goal direction is straight
ahead (zero degrees).

The evaluation function builds according to the information
provided. It starts as just the constant bias term, and adds
the goal steering Gaussian if a there is a goal direction (which
there currently always is, since we assume zero degrees if none
is specified, but future work could make use of the option) and
adds the obstacle suppressions if there are obstacles. Finally,
the real time Openspace code simply outputs the WTA angle,
which is sent to the robot to change its direction accordingly.

E(θ) = E0 + g · e
−(θ−θg)2

σ
2
g −

N∑
i=1

1
ri
· e

−(θ−θg)2

σ(ri)
2 (4)

V. ROBOT CONTROL SYSTEM AND HARDWARE

To ensure rapid development, we opted to keep the sonar
signal processing and Openspace computation in MATLAB,
which was run on a laptop which was attached to the robot.
The sonar system connected to the laptop via USB, and the
Openspace’s WTA direction was sent over a serial connection
to the embedded system on the robot, a Pioneer 3. Lower level
controls at the robot level were handled by Motion Description
Language extended (MDLe), a framework suitable for hybrid
controls systems and robotics [3].

Given both the nature of Openspace and the available
functions in MDLe, we decompose the control of the robot
about the world plane into forward velocity (i.e. translational
velocity) and rotational velocity, also known as the unicy-
cle model. MDLe has a built-in controller that will convert
translational and turning rates into the needed wheel speeds.
Since Openspace does not specify the translational speed of
the robot, we set the robot’s forward speed to a constant
0.05 m/s to ensure safe and reliable travel. When Openspace
computes the evaluation function, the WTA direction, relative
to the robot’s current heading, specifies the angle error, θerror

in which the robot needs to turn to head in a safe direction.
We thus used Proportional control, multiplying this θerror by
a constant Kp to become the turning rate ωturn command sent
to the wheel speed controller. Fig. 6 summarizes the system’s
overall structure.

VI. OBSTACLE SCENARIOS

Fig. 7(a): The robot is able to navigate between two
obstacles. When the robot tries to go through gaps of this
nature head on, oscillations occur since the echoes of the two
obstacles interfere, generating a single accidentally perceived
object directly ahead of the robot. This causes the robot to
turn to avoid the obstacle, eventually breaking the accidental
view. Note that the distance between the two objects is 0.61m.

Fig. 7(b): Two objects too close together for the robot
to pass through generate enough overlapping suppression to
cause the robot to turn, avoiding the gap. Note that the distance
between the two objects is 0.46m and the width of the robot
is 0.48m.

Fig. 7(c): Effects of multiple objects do not stack in the same
manner as other motion planners. Openspace localizes the
effects of objects in the evaluation function by using Gaussians
with small enough variances. Even at the object detection
level, the echoes from two objects that are close enough
together are detected as a single object, further sidestepping
this issue.

Fig. 7(d): The robot is able to find the largest gap and move
through it. In other runs of the same obstacle setup, random
perturbations in the robot’s response will cause the robot to
turn left first. It will then focus on the leftmost gap, which
is the second largest, but just a few inches smaller than the
robot’s width, and it will attempt to navigate through, but will
crash into obstacles. The robot does not intrinsically know if
the gap is large enough to fit through. Parameter tuning or the
addition of whisker-like sensors could solve this problem.

Fig. 7(e): Openspace can also handle random obstacle fields.
If the obstacle field becomes dense, Openspace can be given
maximum object distances ignoring obstacles outside a given
range so that the evaluation function does not become too
chaotic.

VII. CONCLUSION

Our results show that the robot successfully navigated many
notable obstacle arrangements that highlight the capabilities of
Openspace. We feel that Openspace and the sonar system are
highly compatible navigation tools because each one plays to
the strengths of the other. Also, we conclude that Openspace
is an effective motion planner because of the flexibility all of
the parameters provide.

One innovative discovery includes the use of the Michelson
contrast, which avoids many singularity issues. Since ILD and
Michelson evaluations are similar, this substitution provides
practical benefits for the user. The highlight of the project was
the integration of the entire system, starting with receiving raw
echo envelopes and ultimately translating them into real-time
robot instructions.

VIII. FUTURE WORK

Performance with the FIR filter suggests that it can be
replaced with other filters. IIR filters can be lower order and
thus built using fewer physical components and have a shorter
time delay, suitable for harware implementation. In its current
state, our system does not provide the robot with information
about its location in the world frame. For this reason, future
work will include incorporation of a GPS system. This would
allow for goal-oriented movement instead of pure wander
behavior.

A. Feedback

Currently, our only form of feedback in the system is the
P controller which drives the angle error to zero. We wish to
incorporate better forms of feedback to optimize motion plans
generated by Openspace. Feedback can occur at three major
levels: the obstacle detection level, the evaluation function
level, and the robot controller level Object tracking could

Openspace

θgoal=0
Kp

θerr
Robot

Sonar

System

Object

Detection

ωturn

{dobj, θobj}

Sonar pulse

~ ~

{dobj, θobj}

-

Environment

Fig. 6. System overview demonstrating the relation of the P Controller to the rest of the system. Note that the system is sampled due to active sonar, and
an approximation of object locations is used in Openspace.

−1 0 1

0

1

2

3

X Position [m]

Y
 P

os
iti

on
 [m

]

(a)

−1 0 1

0

1

2

3

X Position [m]

Y
 P

os
iti

on
 [m

]

(b)

−1 0 1

0

1

2

3

X Position [m]

Y
 P

os
iti

on
 [m

]

(c)

−1 0 1

0

1

2

3

X Position [m]

Y
 P

os
iti

on
 [m

]

(d)

−1 0 1

0

1

2

3

X Position [m]

Y
 P

os
iti

on
 [m

]

(e)

Fig. 7. Five experimental runs using the robotic platform. 7a: Robot can
safely fit through obstacles. 7b: Robot correctly determines that the gap is too
narrow and moves towards the outside. 7c: Additional obstacles do not affect
Openspace. 7d: Robot finds and travels through the largest gap. 7e: Robot
maneuvers random obstacle field

expand the viewing angle of the sonar system (memory of
out of sight obstacles), and resolve accidental views. In other
words, we expand upon the assumption of inferring the min-
imum number of obstacles to reconstruct the sonar envelope
peaks to the minimum number of obstacles that reconstruct
both previous and current sonar data. At the Openspace
level, we also have the option of adding additional additive
Gaussians centered at previous headings to dampen the system
response. Classical (dynamical system) control techniques can
be applied at the robot controller level, changing how the
control system drives the angle error to zero, by means of
adding compensators, PID control, etc. Hybrid control systems
could also be of interest in handling different scenarios, such
as turning on and off dampening when needed. MDLe’s design
encourages the use of hybrid control systems and should be
of further interest.

ACKNOWLEDGMENT

The authors would like to thank Graham Alldredge, Chetan
Bansal, and Matteo Mischiati for their technical advice and
assistance in the laboratory.

REFERENCES

[1] Shi, R.Z. and Horiuchi, T.K., Neuromorphic VLSI Model of Bat Interaural
Level Difference Processing for Azimuthal Echolocation,IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol 54-1 pp74-88, 2007

[2] T.K. Horiuchi, A Spike-Latency Model for Sonar-Based Navigation in
Obstacle Fields, Institute for Systems Research (preprint), 2008

[3] D. Hirstu-Varsakelis et. al. A Motion Description Language for Hybrid
System Programming, Institute for Systems Research (preprint), 2003

