Automatic Volume Leveler for Real Time Speech Applications

Justin Bare
Dr. Carol Espy-Wilson
Dr. Tarun Pruthi
The Volume Leveler

- Noise Reduction
- Volume Leveling

Noisy → Noise Reduced → Volume Leveled
• Noise reduction is useful
• But it has problems:
 – Attenuation of speech
 – Changes in color or timbre and loudness
Overview

- My goals for the automatic volume leveler
 - Fix speech attenuation
 - Restore loudness
 - Ensure no clipping occurs in output signal
 - Do all of the above under real-time constraints
 - Only present and past frames of signal are available

- For each frame (0.01 seconds) of signal:
Algorithm

- **Input noise-reduced signal frame**
 - **Voice Activity Detector (VAD)**
 - Frame has no speech
 - Update noise tracking
 - Do not amplify
 - Frame has speech
 - Estimate the Signal-to-Noise Ratio (SNR)
 - High SNR: Amplify to original level
 - Middle SNR: Amplify conservatively
 - Low SNR: Do not amplify

Prevent clipping
Ideal vs. Real VAD

- Ideal VAD (not obtained in real time)
 - Clean Signal
 - Phonetic Transcription
Time	Sound
1.78	‘f’
1.9	‘aa’
2.02	‘r’
 - VAD Decision

- Real VAD (obtained in real time)
 - Noisy Signal
 - VAD Algorithm
Ideal VAD vs. Real VAD: SNR and Noise Level Increase

Using Ideal VAD

Using Real VAD
Volume Restoration

Percent of Original Speech Amplitude Attained

Level of Restoration of Speech to Original Amplitude (%)

Signal-to-Noise Ratio (dB)

-12dB -3dB 0dB 3dB 6dB 12dB 18dB

Volume-Leveled Speech (Ideal VAD)
Volume-Leveled Speech (Real VAD)
Noise-Reduced Speech
Future Work

• Less reliance on VAD accuracy
• Incorporate coloring/timbre restoration
• Implement in a fast, low level language such as C

Acknowledgments

• National Science Foundation OCI award #1063035
• Dr. Carol Espy-Wilson
• Dr. Tarun Pruthi
• MERIT BIEN faculty and staff