Comparative Study on Securing Biometrics Data

By: Brigitte Liu and Melonie Hardy MERIT BIEN SUMMER 2011 University of Maryland, College Park

Motivation & Contribution

VS.

Password: • • • 6

Useful but difficult to replace when compromised

Easy to crack, easy to steal, easy to replace

- Implementation of methods:
 - 1. Homomorphic Encryption & cryptographic protocol
 - 2. Random Projections
- Contribution: comparison and trade-off of methods
 - 1. Communication bandwidth
 - 2. Runtime
 - 3. Security strength & Matching accuracy
- Applications: Forensics, Identification, etc.

Points of Attacks

Homomorphic Encryption

- Traditional Encryptions: scramble to hide plaintext
- What is special about Homomorphic encryption?
 Enables certain processing/operations of encrypted data

HE- High Level Overview

Gives Bob
[feature vector]

Euclidean Distance protocol

Minimum/Match Finding protocol

Area of Secure communication over an encrypted domain

Give [Id] to Alice or 0

Bob (Server)

Alice decrypts the ID

Distance Verification

Example of face variations/person:

HE: Vector Size v. Time

Database Size = 200 (40 people, 5 vectors per ID)

Average time for one query out of 200 queries(runs)

HE: Vector Size v. Accuracy

Database 200: 40 people, 5 representative variation pictures/person Database 399: 40 people, 10 representative variation pictures/person

Random Projections

 The core computational method involved in Random Projection is matrix multiplication

 Gaussian, Bernoulli, or other random distribution matrix

$$y = \Phi g$$

RP: High Level Overview

RP Verification: Vector Size v. Time

Database 200: 40 people, 5 representative variation pictures/person

RP Verification: Vector Size v. Accuracy

Database 200: 40 people, 5 representative variation pictures/person

Vector Size v. Runtime

Vector Size v. Matching Accuracy

Vector Size v. Bandwidth

Conclusion & Future Work

- Homomorphic Encryption: security and accuracy most secure communication method, database in plaintext
- Random Projections: easy to use and fast communication is not as secure, database doesn't store plaintext
- Current and Future Work:
 - 1. Implementation & testing of Error Correction Code
 - 2. Implementation of Garbled Circuit ~40% faster

Acknowledgements

- National Science Foundation OCI award #1063035
- Advising Mentor: Professor Min Wu
- Graduate Student Mentor: Wenjun Lu

Citations

- Pillai, J.K.; Patel, V.M.; Chellappa, R.; Ratha, N.K.; , "Sectored Random Projections for Cancelable Iris Biometrics," Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on , vol., no., pp.1838-1841, 14-19 March 2010
- Teoh, A.B.J.; Goh, A.; Ngo, D.C.L.; , "Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs," *Pattern Analysis and Machine Intelligence, IEEE Transactions on* , vol.28, no.12, pp.1892-1901, Dec. 2006
- Beng Jin Teoh, A.; Chong Tze Yuang; , "Cancelable Biometrics Realization With Multispace Random Projections," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on , vol.37, no.5, pp.1096-1106, Oct. 2007
- Pillai, J.; Patel, V.; Chellappa, R.; Ratha, N.; , "Secure and Robust Iris Recognition using Random Projections and Sparse Representations," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.PP, no.99, pp.1, 0

Citations

- Ratha, Connell, & Bolle, 2001, p. 618
- Erkin, Z.; Franz, M.; Guajardo, J.; Katsenbeisser, S.; Lagendijk, I.; Tomas,
 T.; , "Privacy-Preserving Face Recognition," PETS '09 Proceedings of the
 9th International Symposium on Privacy Enhancing Technologies, 2009.
- Vladimir Kolesnikov and Thomas Schneider. Improved Garbled Circuit: Free XOR Gates and Applications. In International Colloquium on Automata, Languages and Programming, 2008.
- Y. Huang, L. Malka, D.Evans, J.Katz. In Proc. of the 17th Annual Network and Distributed System Security Symposium (NDSS), 2011
- A. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient Privacy-Preserving Face Recognition. In International Conference on Information Security and Cryptology,2009
- Some slides are adapted from: http://www.mightbeevil.org/secure-biometrics/ndss-talk.pdf, Huang, Yan. Feb 2011.
- Picture from: http://www.shutterstock.com/cat.mhtml?lang=en&search_source=search_form&version=llv1&anyorall_ =all&safesearch=1&searchterm=boy+and+girl+cartoon+faces&search_group=&orient=&search_cat=&searchtermx=&photographer_name=&people_gender=&people_age=&people_ethnicity=&people_nu_mber=&commercial_ok=&color=&show_color_wheel=1#id=64025365