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Abstract— Most current speaker recognition systems use 

mel-frequency cepstral coefficients (MFCCs) in 
conjunction with delta-cepstral coefficients (DCCs) as 
their front-ends. However, speech signal can be altered 
significantly by channel effects, everyday background 
noise, and reverberation due to room acoustics. Such 
changes can greatly reduce the accuracy of speaker 
recognition systems [2]. For this reason, it is desirable to 
develop a more robust front-end processing system.  

Recently, it was shown that the accuracy of speech 
recognition systems can be improved by taking delta 
features in the spectral domain instead of in the cepstral 
domain. These delta-spectral cepstral coefficients 
(DSCCs), when used in conjunction with the MFCCs have 
been shown to be more robust to additive noise and 
reverberation as compared to the MFCC+DCCs [3]. In 
this project, the robustness of the MFCC+DSCCs was 
tested in a text-independent speaker recognition system 
according to the NIST speaker recognition evaluation 
core-task [4]. It was found that MFCC+DSCCs were more 
robust to white noise and reverberations than 
MFCC+DCCs when training and test data were recorded 
on the same channel type. 
 

Index Terms— Denoising, Dereverberation, Intersession 
Variability Compensation, Speaker Recognition, Speech 
Processing 

I. INTRODUCTION 

Speaker recognition systems are a popular area of research 
due to their many applications in fields such as forensics, 
security, and telephone services. These systems are able to 
recognize a person from his or her voice by analyzing feature 
vectors, collections of data that convey information about a 
person’s unique voice characteristics [2]. The features most 
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commonly used in speaker recognition systems are mel-
frequency cepstral coefficients (MFCCs). Delta-cepstral 
coefficients (DCCs) are often appended to the MFCCs for 
improved accuracy [2].  

The speech data evaluated in speaker recognition systems 
can vary widely in recording quality. These data may have 
been recorded through different types of channels, such as a 
landline telephone, a cell phone, and a room microphone. 
Additionally, the data may contain different levels and types 
of additive noise, such as white noise, babble noise, and 
music. Finally, speech may be recorded in different acoustic 
environments with different impulse responses. Therefore, an 
ideal speaker recognition system, would need to be robust to 
channel effects, noise, and reverberation [2]. 

Development of more robust systems has been the primary 
focus of speaker recognition research. Some systems utilize 
signal enhancement in order to emphasize the speech 
components within a recording. Signal enhancement methods 
include voice activity detection, denoising, and 
dereverberation. However, these strategies add additional 
steps to the speaker recognition process and increase the 
computational load. Certain methods improve speaker 
recognition robustness in the front-end by modifying the 
feature vectors. Such approaches include feature 
normalization, feature warping, short-term Gaussianization, 
and relative spectral filtering. Additionally, some techniques 
improve robustness in the back-end; these include speaker 
model synthesis and feature mapping [2]. 

In this project, we seek to develop a feature extraction 
method which is itself more robust. In a paper by K. Kumar, 
C. Kim, and R. M. Stern [3], a novel set of features was 
proposed for more robust speech recognition. This set of 
features, called delta-spectral cepstral coefficients (DSCCs), 
was sought to improve recognition accuracy via performing 
the first delta operation in the spectral domain rather than the 
cepstral domain. It was shown that DSCCs were more robust 
to noise and reverberation than DCCs when both feature types 
were used alone and in conjunction with MFCCs [3]. 

In this report, we discuss whether MFCC+DSCCs are more 
robust than MFCC + DCCs when applied to speaker 
recognition, according to the NIST 2008 Speaker Recognition 
Evaluation Plan core-task. In order to test the MFCC+DSCCs 
against the MFCC+DCCs for robustness, we ran separate 
evaluations with white noise, babble noise, and reverberation 
added to the clean NIST test data.  
 
The paper is organized as follows: in Sec. II.i, we discuss 
current speaker recognition systems and the features used 
most frequently in these systems. Additionally, we propose 
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delta-spectral cepstral coefficients as a more robust set of 
features. In Sec. II.ii, we briefly describe our back-end system.  
In Sec. II.iii, we list some of the details of the NIST 2008 
Speaker Recognition Evaluation Plan, a benchmark for this 
particular experiment.  In Sec. III, we display the results of the 
experiment.  In Sec. IV we draw conclusions from our 
findings, and in Sec. V we propose future research.  

II. EXPERIMENTAL SETUP 
i. DCC vs. DSCC 

Speaker recognition systems consist of a front-end, in which 
speaker-specific features are represented as a finite set of data, 
and a back-end, in which speaker models are trained and test 
data is compared to said models [2].  

Any front-end system entails transforming the speech signal 
into feature vectors, containing information unique to each 
speaker and useful for speaker recognition. Speaker-specific 
information includes: short-term spectral features, voice 
source features, spectro-temporal features such as rhythm, and 
high level features such as word usage. Different feature 
extraction systems highlight different voice characteristics [2].  

Mel-frequency cepstral coefficients, or MFCCs, are some of 
the most popular features for speech processing. Computation 
of MFCCs involves many steps. After being sampled the input 
speech signal is pre-emphasized, multiplied by a smooth 
window function, and then a short-time Fourier transform is 
performed. The spectrum is multiplied by a mel-scale filter 
bank, which weights the features so as to mimic human 
perception of pitch. After mel-filter integration, the signal 
undergoes logarithmic compression and a discrete cosine 
transform which reduces the number of features and 
eliminates complex components of the signal [2]. 
In summary, MFCC’s are obtained as follows: 
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Where the mel-scale filter bank consists of M-channels and is 
denoted as Y(m), m = 1, …, M, and n is the index of the 
cepstral coefficient [2]. 

It is to be noted that the logarithmic nonlinearity stage 
allows for a reduction of channel effects via cepstral mean 
subtraction, which recovers the original speech sequence from 
its convolution with the recording medium [5]. 

For improved accuracy, the first and second time 
derivatives of the MFCCs, delta and double-delta-cepstral 
coefficients (DCCs) are used as additional features. DCCs 
incorporate speaker-specific temporal information, such as 
formant transitions and energy modulations (rhythm) [2].  

Though the addition of DCCs to MFCCs does improve 
recognition accuracy over the use of MFCCs alone, this 
improvement decreases with the addition of noise or 
reverberation [3].   
 

 
Fig. 1. Equal error rates of a speaker recognition system with an 
MFCC front-end in different levels of white noise [1]. Line colors 
indicate conditions for training and testing data according to the 
NIST 2008 SRE evaluation conditions: “intw-sameMic” indicates 
that data contained interview speech recorded on the same 
microphone in training and test; “tele-tele” indicates that telephone 
speech was used in both training and test [4].  
 

Figure 1 displays a plot of the equal error rate of an MFCC-
based speaker recognition system. As the level of white noise 
in the speech signal increases, the system’s performance 
worsens (the equal error rate increases). In general, the system 
also suffers when there are channel mismatches in training and 
test data.  

In our speaker recognition system, we implemented a 
feature extraction method developed by Kumar, et al. [3]. We 
appended MFCCs to delt-spectral cepstral coefficients 
(DSCCs) instead of DCCs. DSCCs differ from DCCs in that 
the first delta operation is performed immediately after mel-
filter integration while the feature vector is still in the spectral 
domain. A second delta-operation is performed after the 
discrete cosine transform [3]. Figure 2 compares the two 
extraction processes: 
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Fig. 2. Different extraction processes for (a) 13-dimensional MFCC 
features and 26-dimensional delta-cepstral coefficients (DCC), (b) 
26-dimensional delta-spectral cepstral coefficients (DSCC) [3]. 
 

Note that the DSCCs use a Gaussianization nonlinearity 
rather than a logarithmic nonlinearity.  

DSCCs were proposed over DCCs because it was shown 
that DSCCs were more robust to noise and reverberation than 
DCCs in the area of speech recognition [3]. We applied 
DSCCs to speaker recognition hoping to attain a more robust 
front-end system. 

The short-time power plots in Figure 3 come from the 
aforementioned paper [3]: 
 

 

 
(a) 

 

 
(b) 

 
Fig. 3. Short-time power plots of a single mel-channel for (a) 
temporal difference over the logarithmic power of a speech signal 
(reflecting DCC) and for (b) the Gaussianization operation over the 
temporal difference of a speech signal (reflecting DSCC) [3]. 
 

Note that the lines representing the clean and noisy speech 
signals are more similar in the plot representing DSCCs; this 
similarity suggests that DSCCs should be more robust features 
in noise than DCCs, possibly due to the Gaussianization 
nonlinearity which replaces the logarithmic nonlinearity.  

Figure 4 further suggests the improvement of DSCCs over 
DCCs, using power-plots generated from the actual feature 
extraction program being used in this experiment. These 
power-plots include all forty mel-channels. 

The top plots, (a) and (b), represent the spectrogram of a 
clean speech signal (on the left) and a speech signal with 0 dB 
Gaussian white noise added (on the right). The robustness of 
each type of feature can be assumed by comparing the plot 
corresponding to the clean signal to the plot corresponding to 
the noisy signal. The plots for clean and noisy speech are most 
similar in the “Gaussianization operation over the temporal 
difference of speech signal,” plots (g) and (h), which 
corresponds to the DSCC front-end. It can be expected that the 
DSCCs will be more robust than the DCCs, at least in 
Gaussian white noise, based on these power plots. 
 
ii. Back-end System 
    In the back-end system, we used the standard Gaussian 
mixture model (GMM) approach to speaker modeling. A 
universal background model (UBM) was trained in each 
condition using the expectation-maximization algorithm. From 
each UBM, we adapted speaker-specific GMMs (target 
models) using the maximum a posteriori (MAP) method [2]. 
Figure 5 illustrates the MAP adaptation method. 
 

 
 
Fig. 5. GMM target model training using MAP adaptation [1]. 
 

Using the MAP method decreases the computational load; 
generating a UBM effectively “narrows the search” for the 
target model.  Adapting the target model from the speaker 
training data and the UBM requires less time and computation 
than would adapting the target model from the training data 
alone [2].  
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Fig. 4. Spectrograms and short-time power plots for clean and noisy speech signal, comparing three different types of features. (a) and (b): 
spectrograms for clean and noisy speech signal, respectively. (c) and (d): short-time power plots for all mel-channels of a mel-filtered 
speech signal, clean and noisy, respectively. (e) and (f): short-time power plots for the temporal difference operation over the logarithmic 
power of speech signal, clean and noisy, respectively, representing DCC’s. (g) and (h): short-time power plots for the Gaussianized temporal 
difference of the speech signal, clean and noisy, respectively, representing DSCC’s. Note that the clean and noisy plots are most similar in 
(g) and (h), indicating that DSCC’s with Gaussianization nonlinearity should be more robust features than DCC’s with logarithmic 
nonlinearity. 
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 iii. NIST Speaker Recognition Evaluation Plan 
All training and test data in our experiment came from the 

NIST 2008 Speaker Recognition Evaluation Plan. We 
implemented our speaker recognition system on two of the 
eight conditions detailed in the NIST 2008 SRE core test. 
These were condition 2, in which all data is interview speech 
and the same microphone was used in training and test, and 
condition three, also interview speech, in which different 
microphones were used in training and test [4]. 

We performed the speaker recognition task with two 
different front-end systems: using a 13-dimensional set of 
MFCCs appended to a 26-dimensional set of DCCs and using 
a 13-dimensional set of MFCCs appended to a 26-dimensional 
set of DSCCs. Because all test data provided by NIST were 
clean speech signals, we added white noise, babble noise, and 
reverberation in order to evaluate the robustness of each set of 
features. We tested both systems on clean speech as well as in 
different levels and types of noise and reverberation in order 
to see if the novel delta-spectral features showed any 
improvement over delta-cepstral features.  

The NIST test data were evaluated in a clean condition as 
well as with the addition of:  

• Gaussian white noise at 30, 20, 10, and 0 dB SNR 
• Babble noise at 30, 20, 10, and 0 dB SNR 
• Reverberation with 200, 400, 600, 800 ms RT30 

Performance in each condition was evaluated based on the 
detection error tradeoff (DET) curve and equal error rate 
(EER). The DET curve plots the probability of a “miss” (the 
test data comes from the target speaker and is falsely rejected) 
vs. the probability of a false alarm (the test data comes from a 
non-target speaker and is falsely accepted).  A more useful 
performance measure, the EER, is derived from the DET 
curves generated in the scoring stage.  The EER represents the 
accuracy of the system at the threshold at which the 
probability of a miss and the probability of a false alarm are 
equal.  A lower equal error rate indicates a better system [2]. 

III. EXPERIMENTAL RESULTS 
Figure 6 displays the overall equal error rate for 

MFCC+DCCs and MFCC+DSCCs for all different test 
conditions. 

In general, MFCC+DSCCs were more robust to white noise 
and reverberation than MFCC+DCCs in condition 2, when 
training and test data were recorded on the same microphone 
type. MFCC+DSCCs showed no improvement over 
MFCC+DCCs in babble noise in condition 2 or 3. In condition 
3, when there was a channel mismatch between training and 
test data, MFCC+DSCCs were actually less robust overall 
than MFCC+DCCs. 

IV. CONCLUSIONS 
The MFCC+DSCCs used in our feature extractor did not 

prove to be as robust to noise, reverberation, and channel 
effects as we had hoped. The feature extraction method 
devised by Kumar, et al. [3], was optimized for speech 
recognition; we likely could have improved this front-end 
system by modifying it to emphasize speaker-specific 
properties rather than speech-specific properties such as 
phonetic classes. Additionally, performing a Gaussianization 

instead of a logarithmic operation may have reduced the 
effectiveness of cepstral mean subtraction in the DSCC 
features. Cepstral mean subtraction significantly reduces 
channel effects; our speaker recognition system was not robust 
to variations in channel type. Finally, it was illustrated via 
short-time power plots in [3] that the delta-spectral features 
with Gaussianization were more robust than the delta-cepstral 
features in white noise. This same robustness was not 
illustrated for additive babble noise.  It is possible that the 
delta-spectral features were devised to be more robust to 
slowly-changing noise, not necessarily to quickly-changing 
noise.  

V. FUTURE WORK 
Delta-spectral cepstral coefficients may still be utilized in a 

more robust front-end system for speaker recognition. The 
DSCC feature extractor could be modified in order to better 
suit a speaker recognition system. It would be practical to 
analyze DSCCs using a logarithmic nonlinearity rather than a 
Gaussianization nonlinearity, with a potential for reduction of 
channel effects. Also, it would be beneficial to analyze DSCCs 
in conjunction with other types of features, such as linear 
predictive cepstral coefficients (LPCCs), as it is possible that 
DSCCs appended to other types of features will prove more 
robust than DSCCs appended to MFCCs. 
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(a) EER for cond. 2 in 
Gaussian white noise 

(b) EER for cond. 3 in 
Gaussian white noise 

(d) EER for cond. 3 in 
babble noise 

(c) EER for cond. 2 in 
babble noise 

(e) EER for cond. 2 in 
reverberation 

(f) EER for cond. 3 in 
reverberation 

 

Fig. 6. Comparision of EERs. “Condition 2” indicates that all trials involved interview speech with the same microphone type used in 
training and test. “Condition 3” indicates that all trials involved interview speech with different microphone types used in training and test. 


