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Abstract - Voice activity detectors (VADs) are ubiquitous in 

speech processing applications such as speech 

enhancement, signal-to-noise ratio (SNR) estimation, 

speech recognition, etc. VADs attempt to distinguish 

between speech and non-speech regions in a signal. 

Current VADs use measures such as energy differences, 

periodicity, and spectral differences that exist between 

different sounds. Some models use heuristic algorithms, 

while others use statistical models in a supervised or 

unsupervised learning framework. In this project, 

different VADs described in the literature were compared 

and evaluated on a comprehensive set of noises and SNRs. 

Based on their performance, the algorithm that performed 

most accurately and consistently was implemented in C 

programming language. 

 

 
Index Terms—Voice activity detection. 

 

I. INTRODUCTION 

OICE activity detection is an important step in speech 

processing applications such as speech enhancement, 

speech coding and speaker recognition. Voice activity 

detection approaches consist of feature extraction and 

discrimination models. Early voice activity detectors (VADs) 

paid attention to robust features of a signal such as energy, 

periodicity, dynamics and zero-crossing rates, and based their 

discrimination techniques on heuristic models. More recent 

VADs, while utilizing many of the same features, base their 

discrimination on statistical models. Typical statistical model 

based classifications use Gaussian distributions to describe 

various features of noise and speech, develop a likelihood ratio 

from comparison of measured parameters fitted in different 

models, and conduct a hypothesis test to make the speech/non-

speech decision. Besides good and consistent performance 

across several different noise types and SNRs, the 

characteristics of a good VAD include low computational 

complexity and fast adaptation to changing noise types and 
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SNRs. 

The goal of this project was to determine conclusively the best 

and most consistent VAD algorithm out of the ones proposed 

in existing literature and standards, and to implement the best 

one in C programming language. Because proposed VAD 

algorithms in the literature are not subjected to standardized 

tests where they are compared against the same set of speech 

utterances, noise types and SNRs, it is difficult to know which 

VAD algorithms are the most robust, despite the conclusion of 

the authors. In this project therefore, an initial literature survey 

was carried out to determine the VAD algorithms that 

appeared to have exceptionally good performance. These 

VADs were determined by taking into account the conclusions 

of the authors, the novelty of the approach used, and the level 

of complexity of the algorithm. The complexity of the 

algorithm was especially crucial if the algorithm was to be 

practically and successfully implemented in C. After compiling 

the results from the literature survey based on the 

aforementioned criteria, a comprehensive test setup was 

designed, where each of the VADs were ran against the same 

database of speech utterances in different noise types at 

different SNRs. Results across different measurements and 

types of classification of errors were used to evaluate the 

performance of the different VADs. Finally, based on the 

results of the test, the best performing VAD was chosen and 

the algorithm was implemented in C programming language.  

  The rest of the paper is organized as follows. Section II 

provides an overview of a generalized VAD algorithm and a 

summary of the literature survey. Section III describes the test 

setup and the different measures used to evaluate the VADs. In 

Section IV the results of the tests are presented. Section V 

concludes the paper with an evaluation of the results and an 

evaluation of the properties of the best performing VAD 

algorithm.  

II. VAD ALGORITHM OVERVIEW 

VAD algorithms operate by taking in a digitized audio signal, 

processing this signal, extracting particular features from the 

processed signal, passing the extracted features of the signal as 

parameters to a model that describes that feature in noise and 

in speech, and finally outputting the decision based on 

thresholds defined in the model. There are many different 

features that different VAD algorithms model, commonly used 

among them being Fourier coefficients, periodicity and zero-

crossing rates. Similarly there are various models that VAD 

algorithms use to describe these features, some based on 

heuristics while others based on statistical models. Popular 

statistical models include Gaussian distributions and Laplacian 
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distributions. Based on the decision rule defined in the model, 

the VAD outputs a flag to indicate the presence or absence of 

speech. 

 

 

 

 

 

 

Figure 1. Block diagram for VAD algorithms 

 

A.  Ying et al. 2011(in press) 

D. Ying proposed a VAD algorithm based on an unsupervised 

learning framework [1]. This particular algorithm was based 

on a sequential Gaussian Mixture Model (SGMM), and it 

utilized as its feature parameter the energy distribution in Mel-

spaced frequency bands of the signal. The Gaussian Mixture 

Model used comprised of two Gaussian distributions, each 

trying to model either noise or speech. The models were 

trained using an unsupervised learning process, whereby the 

initial frames from a signal were clustered into the two 

Gaussians, with the distribution with the lowest mean 

representing noisy regions and the distribution with the higher 

mean representing speech regions. The estimated distributions 

were also used to determine a decision threshold to 

discriminate speech from non-speech. This algorithm 

performed the detection process in each sub-band, 

independently of all other sub-bands, and the results from each 

sub-band were used to determine the final output through a 

voting procedure decided by some threshold determined 

experimentally. A hangover scheme which simply delayed the 

transition from a speech declaration to a non-speech 

declaration was also implemented to account for the low 

energy regions of the tail end of utterances  

B. J.  Sohn et al. (1999) 

The much cited Sohn VAD based on a statistical model [2] has 

a very similar approach to the Ying VAD [1], in terms of its 

use of the energy in a signal as its primary parameter for model 

comparison, and its use of Gaussian distributions to model the 

distribution of the speech and non-speech energies. The Sohn 

VAD however does not separate the signal into different 

frequency bands, but takes into account the distribution of the 

entire spectrum. The algorithm employs the Decision Directed 

method to estimate the a priori SNR in the signal. A likelihood 

ratio is then computed using the SNR in the current frame and 

the estimated a priori SNR which is then compared to some 

threshold determined by the distribution model to make the 

speech/non-speech decision. This algorithm also implements a 

hangover scheme to prevent the clipping of weak speech tails, 

however rather than implementing a simple delay in transition 

from a speech to a non-speech indicator, the hangover scheme 

is based on a Hidden Markov Model whereby the speech 

decision of a current frame only depends on the current frame 

and the previous frame, making the correlation between 

consecutive speech frames explicit. A major distinguishing 

factor of the Sohn VAD is the semi-supervised training of its 

Gaussian model. The noise statistics are estimated by assuming 

an initial non-speech region in a signal to train a noisy model, 

which amounts to supervised learning, before subsequent 

frames are then used to update the model in an unsupervised 

manner. 

C. ITU G.729B 

The ITU G.729B VAD is an algorithm used widely in 

comparisons of different VAD algorithms [3]. It uses four 

features as its parameters, the full and low-band frame 

energies, the set of line spectral frequencies (which are Linear 

Predictive Coding (LPC) coefficients), and zero crossing rates. 

Running averages are calculated of the long-term signal 

parameters and the characteristic energies of the background 

noise. Difference measures are then computed that compare 

the feature parameters in a particular frame to the running 

averages, and a decision is made based on the union of the 

speech/non-speech results given by the four different 

measures. Based on models of each of these features, the final 

decision is determined by the combination of the decisions 

made by each model. This VAD also implements a hangover 

scheme to smooth the voice activity decision. 

D. ETSI AMR VAD 

There are two implementations of the ETSI AMR VAD, 

option 1 (AMR 1) and option 2 (AMR 2) [4].  

The AMR 1 algorithm operates by first separating the audio 

signal into different frequency bands and then detecting pitch 

and tone (variations in pitch) presence in the sub-bands as 

indications of speech. A hangover scheme is added to account 

for low power endings of speech bursts. 

The AMR 2 algorithm uses as its feature parameter the energy 

in a particular sub-band and its power spectral density 

estimate. The sub-band energy in a current frame is compared 

to long-term energy estimates and a decision is made based on 

the SNR difference measure. Running estimates of the 

background noise are computed based on the deviation of the 

spectral density in order to provide an adaptive measure of the 

SNR. This algorithm also provides a hangover scheme to 

smooth the decision making process. 

 

The Ying, Sohn, ITU G.729B, AMR 1 and AMR 2 VADs 

were subsequently tested against the same database and for the 

same measures to provide a comprehensive comparison. All 

these VADs represented both the heuristic approach and the 

statistical approach to decision making, and they used a variety 

of features and combinations of features as the parameters in 

their models The Sohn VAD is based on robust statistical 

modeling and hypothesis testing which is a novel approach that 

many subsequent algorithms have been based on. The Ying 

VAD algorithm refined the Sohn algorithm by introducing a 

completely unsupervised learning training method for the 

statistical models which avoided the problem of non-speech 

assumptions at the beginning of audio signals. The ITU 

G.729B and the AMR VADs use different features in 

combination and base their decision on heuristics. These 

VADs therefore to a large extent represent a comprehensive 

set of the most commonly used VAD approaches, and the 

results of the tests give a good indication of the most robust 

approaches to voice activity detection for future application. 
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III. TEST SETUP 

The five VADs were run across a database of utterances in 22 

different noises and at 7 different SNRs (-12dB, -3dB, 0dB, 

3dB, 6dB, 12dB, 18dB). For each noise type and SNR there 

were 6 phonetically diverse utterances from the TIMIT 

database, 1 for each of 6 speakers comprising of 3 males and 3 

females. The ground truth to which their output was compared 

to was based on the phonetic transcriptions of the utterances 

provided with the TIMIT database. Only the begin/end 

markers (h#) and the pause markers (pau) were considered to 

be non-speech, with every other transcription indicating 

speech. VAD performance is typically measured by its 

accuracy in detecting speech as speech, and in detecting noise 

as noise. These measures are defined as the speech hit rate and 

non-speech hit rate respectively. However, in the event that a 

VAD makes an error, different errors can be considered more 

acceptable than others depending on the purpose. For example, 

in VAD performance an error that calls a noisy region a speech 

region may be more desirable than one which calls a speech 

region a noisy region. Measures to characterize different errors 

as described below, outlined by A. Davis et al. 2006 [6], are 

therefore used as well to fully describe and evaluate 

performance of different VADs. 

 

 Front End Clipping (FEC): Errors that misclassify the 

beginning of an utterance or a word as non-speech. 

 Mid Sentence Clipping (MSC): Errors that classify regions 

in the middle of sentences as non-speech. 

 Overhang error (OVER): Errors that misclassify non-speech 

regions at the end of utterances as speech due to the 

implementation of the hangover scheme. 

 Noise detected as speech (NDS): Errors whereby noisy 

regions are misclassified as speech. 

 Speech hit rate: Percentage of correct declarations of 

speech. 

 Non-speech hit rate: Percentage of correct declarations of 

non-speech. 

 Average hit rate: Average of speech hit rate and non-speech 

hit rate. 

 

The most meaningful measure in this set up was the average 

speech/non-speech hit rate. This measure was a simple average 

of the speech and non-speech hit rates in a particular noise 

type at a particular SNR on a scale from 0 to 1, with scores 

closer to 1 indicating better accuracy. This measure however 

did not explicitly take into account any preferences to speech 

bias, as the weights of the speech and non-speech hit rates in 

computing the average were equal. It was however observed 

from experimental data that all the VADs were biased towards 

correctly classifying speech. Therefore in their calculations the 

average hit rate was already reflecting the implicit bias.  

Another measure considered was the consistency in 

performance of the VADs in different noise types at the same 

SNR. VADs that have comparable performances in different 

noise types at the same SNR may be better suited to certain 

applications than VADs whose performance varies greatly 

with noise type at the same SNR. 
 

 
Figure 2. 

Pauses (pau) and begin/end markers (h#) are declared non-speech. 

Every other transcription is declared speech. 

IV. RESULTS 

Based on the test set up, the Ying VAD emerged as being the 

most accurate and most consistent algorithm against the 

utterances in the different noise types and different SNRs.  

It was consistently among the best performers at all SNRs. The 

second best performer was the AMR 2 VAD, followed by the 

Sohn VAD, ITU VAD and the AMR1 VAD. 

 
Table 1. 

VAD average speech/non-speech hit rates 

 

 Ying  AMR 2 Sohn ITU AMR 1 

-12 dB 0.4768 0.2687 0.4139 0.3133 0.5174 

-3 dB 0.6351 0.5986 0.5484 0.3974 0.5260 

0 dB 0.6795 0.694 0.6006 0.5133 0.5141 

3 dB 0.7148 0.7411 0.6496 0.5570 0.5039 

6 dB 0.7524 0.7637 0.6956 0.5962 0.5009 

12 dB 0.8057 0.7790 0.7606 0.6575 0.5031 

18 dB 0.8454 0.7890 0.8029 0.7055 0.5164 

Average 

Hit Rate 

0.7014 0.6620 0.6388 0.5343 0.5117 

 

Table 2. 

Speech and non-speech hit rates in clean speech  

 

 Ying AMR2 Sohn  ITU AMR1 

Speech hit 

rate 

0.9864 0.9665 0.9879 0.9960 0.9970 

Non-speech 

hit rate 

0.7177 0.6482 0.6628 0.4663 0.5045 

Average 

speech/non-

speech hit 

rate 

0.8521 0.8074 0.8254 0.7312 0.7508 

 

 

Most of the errors in the Ying VAD were due to front end 

clipping, and the least errors were due to the overhang scheme 

as shown in Table 3. 

Table 3. 
Ying VAD Error Summary 

 

 FEC MSC OVER NDS 

-12dB 0.2277 0.0251 0.0018 0.0701 

-3dB 0.1352 0.0184 0.0015 0.0589 

0dB 0.1129 0.1629 0.0015 0.0552 

3dB 0.0956 0.0213 0.0016 0.0519 

6dB 0.0796 0.0139 0.0015 0.0472 
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12dB 0.0622 0.0117 0.0015 0.0369 

18dB 0.0455 0.0089 0.0017 0.0322 

Average 0.1084 0.0166 0.0016 0.0504 

 

The accuracy of the VADs improved as the SNR progressed 

from the very low level of -12dB to 18dB and clean signals as 

shown in Figure 3. 

 
Figure 3. Speech/non-speech hit rates across SNRs 

 

All the VADs performed poorly in music2 type noise (periodic 

noise) and all VADs except the Ying VAD performed worst in 

pass type noise. In the Ying VAD, the best results were 

recorded in pass noise. Despite poor performance in music2 

noise, the VADs performed well in other periodic noises such 

as babble noise and music1 noise (music1 noise is instrumental 

(heavy metal), music2 noise is lyrical (reggae)), therefore the 

performance of the VADs was not generally worse in periodic 

noises, though the worst performance was recorded in a 

periodic noise. The best performances were in a variety of 

noises, however the VADs achieved the overall best results in 

the fire60nosiren noise type.  (See Figure 6 – 10 (Note 

different scales for presentation clarity)). 

 

 
Figure 4. Speech/non-speech hit rate in aperiodic noise 

 
Figure 5. Speech/non-speech hit rate in periodic noise  

 

The performance over different noise types also varied with 

VADs, with some experiencing more variation over different 

noise types at a particular SNR than others. Table 3 shows the 

variance of the speech/non-speech hit rates caused by different 

noise types at a particular SNR. 
 

Table 4.  

Speech/non-speech hit rate variance (x 10-3
) 

 

 Ying Sohn AMR 2 ITU AMR 1 

-12 dB 14.1 36.9 51.1 7.8 0.5 

-3 dB 5.2 23.0 13.8 3.5 0.9 

0 dB 4.0 16.4 5.4 1.7 0.3 

3 dB 3.8 9.9 2.4 0.85 0.08 

6 dB 2.6 5.9 0.9 0.82 0.0083 

12 dB 1.7 3.4 0.1 1.9 0.099 

18 dB 0.6 2.5 0.04 3.0 1.6 

Average 

(from 0 

– 18db)  

2.54 7.62 1.77 1.65 0.42 

 

 

 
Figure 6. Ying VAD hit rates in different noise types at different 

SNRs 
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Figure 7. Sohn VAD hit rates in different noise types at different 

SNRs. 

 
Figure 8. AMR 2 hit rates in different noise types at different SNRs 

 

 
Figure 9. ITU G.729B hit rates in different noise types at different 

SNRs 

 
Figure 10. AMR 1 hit rates in different noise types at different SNRs. 

V. CONCLUSION 

The approach outlined by D. Ying et al. achieved the best and 

most consistent performance at all SNRs and different noise 

types with a comparatively low variance in performance in 

different noise types. 

 The unsupervised learning of the models proved to be a robust 

approach to modeling parameter distributions, while the sub-

band level decision-making process lead to greater accuracy. 

The overhang scheme implemented was also very robust as 

there were very few errors associated with it.  

 There are however some concerns about the Ying algorithm. 

The first concerns the startup time of the algorithm, which is 

greater than 0.5s due primarily to the unsupervised model 

training which, in the default setting, requires 60 10ms frames 

in order to converge to an accurate model. This time lag may 

be inappropriate for some applications of the VAD. Another 

concern is the computational load of the algorithm. Although 

the decision making process in each sub-band of the signal is 

very efficient, as a whole, carrying out the same process for 

several bands becomes a high computational cost, which 

similarly may be undesirable in certain VAD applications. 

Despite these shortcomings, the Ying VAD was shown to 

perform exceptionally well against other VADs in a standard 

testing framework, and the potential of the unsupervised 

learning framework in voice activity detection has been 

demonstrated as being a high performing and robust approach. 
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