
Z. Andemariam, L. Leposo / D. Stewart

Object-based design of device drivers

Affiliations : University Institute of Advanced Computer Studies • A.J. Clark School of EngineeringSponsors : National Science Foundation(NSF)•The RiteSite REU program

A Remote controlled Embedded System
for Real-Time Operating Systems:

INFRARED REMOTE CONTROL:
This involved gaining an understanding of Ir signal processing and communication.
Our remote encodes a command then puts it on a 40KHz carrier frequency.
Once received, the signal is processed to give this encoded logic output.

There are two standards for remote control signal encoding, the RC5 and RECS80
protocols. The RC5 uses a uniform duration for all bits transmitted, however the
transitions/edges occur in the middle of that duration. The RECS80,on the other hand,
uses pulse length modulation to encrypt short remote control commands. A logic LOW
is represented as a “ZERO” of period T followed by “ONE” of period 2T. The logic HIGH
is a “ZERO” of period T followed by a “ONE” of period 4T. Our Ir remote control uses the
RECS80 with a T of 0.5ms.

> in- consts

init

> out- consts

OFF

on

> in- vars

> out- vars

on

out- vars >

ON

off

out- vars >out- vars >

off

reinit

off

out- vars >

> in- consts

reinit

> out- consts

kill

kill

on any error
 before task
 reaches

off state

ERROR

clear

clear

error

out- vars >

cycle

> in- vars

wakeup

offkill

if SBS_ERROR
 returned

 on any error
after task receives

on signal

Legend:

state of task call specified
method of object

block until specified
event occurs

> xxx : copy from global into
local state variable table

xxx >: copy from local into
global state variable table

if SBS_CONTINUE
 returned

if SBS_OFF
 returned

spawn

NOT
CREATED

clock
interrupt

sync

external
 signal

Periodic Aperiodic

Finite State Machine of Port-Based ObjectFinite State Machine of Port-Based Object

OBJECTIVE:
To investigate the built-in support for peripheral devices in Real Time Operating
Systems(RTOS) running on Digital Signal Processors(DSPs).

MOTIVATION:
There are few good and inexpensive RTOSes for DSPs.

Non-Real Time operating systems such as Unix and Windows have two
standard formats for driver design that cater, separately, for block and
character devices. This standard, however, can’t be adapted for RTOSes partly
because it results in a lot of CPU overhead due to things such as Context
Switching. Port-Based design of drivers provides a single standard for RTOSes
in addition to minimizing the overhead associated with device interfacing.

Most of the development of drivers and applications for such purposes are done
in an ad-hoc and time consuming manner because little has been done to
support reconfigurable interfacing of current RTOSes and external devices
(hardware). An RTOS that supports portable reconfigurable applications and
drivers will be of great use to the real-time systems community. Some of the
immediate benefits will be, a reduction in development time due to rapid
prototyping, cost savings that result from this and reusability of code.

APPROACH
No DSP ROTS is available for our work so we will work on the Chimera RTOS
that runs on a VMEbus until Echidna is available.

The fundamental approach used in achieving our objectives is to focus on one
device- the remote control and use it to gain an insight into the issues that arise
with device driver and application development.

The driver and applications for the remote control are then modeled as a PBO
(Port-Based Object).

REFERENCES
Design of Dynamically Reconfigurable Real-Time Software Using Port-Based
Objects.
D. Stewart, R.A. Volpe, P.K. Khosla
EEE Trans. on Software Engineering, v.23, n.12, December 1997, pp. 759-776

An I/O Device Driver Model and Framework for Embedded Systems
D.B. Stewart
Proc. of IEEE Workshop on Middleware for Distributed Real-Time Systems and
Software (MDRTSS), San Francisco, December 1997.

Embedded Systems

RF REMOTE CONTROL.
This involved gaining an understanding of RF signal processing and communication.
Our remote encodes a command then puts it on a 49MHz carrier frequency.
Once received, the signal is processed to give this output on a digitizing scope.

REMOTE CONTROL

Command encoded in RF/IR signal

 DSP RTOS

MICROKERNEL DEVICE DRIVERS USER etc...
 INTERFACE

LED DISPLAYS REMOTE etc...
 CONTROL

IR REMOTE RF REMOTE
L. LEPOSO Z. ANDEMARIAM

Since there was no protocol available for this signal we sought to decode it by time
analysis. Each command is encoded as a start sequence followed a unique series of data
bits which end with a stop pattern. All commands share the same start and stop
sequences. These sequences consist of two LOW-HIGH sequences each with a duration of
4ms (3ms for the LOW and 1ms for the HIGH). The data constitutes a series of LOW-HIGH
each with a period of 2ms (1ms for the LOW and 1ms for the HIGH).

