It has been hypothesized that cell phones present a health hazard because biological cells can demodulate an RF carrier and thereby expose tissue to low frequency signals. We have shown definitively that this does not occur.

INTRODUCTION

Doubly Resonant Cavity
- Cavity made at University of Maryland for HPA.
- Radius = 12.35 cm
- Length = 27.22 cm
- Unloaded Q = 1250
- Dominant modes
 - $TE_{111} = 883$ MHz
 - $TE_{113} = 1766$ MHz

Cavity Quality Factor and SAR
DEFINITION of Q: Energy stored / Energy dissipated per signal cycle.

$$Q = \frac{P_{in}}{P_{loss}} = \frac{E_{in}}{E_{loss}}$$

$$P_{in} = \frac{E_{in}}{Q}$$

Resonance Curve Lorentzian

Measurement of Load Factor
- Measure Input Power vs. Frequency
 - (Resonance Curve) with Network Analyzer and Input Power P_i (Resonance) and P_o
- Lorentzian Fit: Resonance Curve Provides the Cavity Q

$$Q = \frac{P_i}{P_o}$$

- Frequency of Minimum Reflection
- f_o = Band of Return Loss < 3 dB

Load Factor of Test Cavity

$$LF = (1/Q - 1) = (Q_{1} / Q_{0})$$

$$LF = (a_1 / a_0) X R_i / R_o - 1 = R_i / R_o$$

$$a_1 / a_0 = 1$$

Range of Measured SAR 0.5-15 W/kg

Equipment Setup

Evaluation of Nonlinear Response of Cell Samples
- Measure Power Level of Second Harmonic (2f_i) of Incident RF Signal (f_i) with Spectrum Analyzer
- Measured Levels < -155 dBm with 1mW Input (20dB RF Amplifier at 2f_i)
- Measure Cavity Q and RF Power Dissipated (P_d) at $2f_i$
- Energy of Second Harmonic E_{2f_i} Amplitude, $Q = 1000$ at $2f_i$, $P_i = 185$ dBm
- Second Harmonic Generation Coefficient $\chi^{(2)}$ $N(2a) = a_2 \chi^{(2)} E_i$ (a)

Conclusions
- Cell nonlinear response not above noise floor = -85 dBm for 1mW and -195 dBm for 0.1 mW input power
- Nonlinearity coefficient $\chi^{(2)} < 10$ mw$^{-2}/$V2
- Coherent rectification of RF CIV carriers by individual cells not found.
- No cooperative rectification by cells
- Second harmonic probably detectable with strong pulses

Research supported by MTHR