

Jeremy N. Munday

University of Maryland Department of Electrical & Computer Engineering Institute for Research in Electronics and Applied Physics December 9, 2016

December 2016

Laboratory of Solar and Quantum Technology

December 2016

Outline

 Active control of light trapping for a smart solar window Murray, Ma, and Munday ACS Photonics (in press 2017) DOI: 10.1021/acsphotonics.6b00518
Tunable radiation pressure for space propulsion

Ma, Murray, and Munday *Advanced Optical Materials* (accepted 2017)

 Hot carrier detectors and energy converters

Gong and Munday, Nano Lett. 15, 147–152 (2015)

Outline

About 40% of total U.S. energy consumption is in residential and commercial buildings

Source: U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary, Table 5 (March 2016)

December 2016

Switchable solar windows

Polarized liquid crystal windows

Semi-transparent solar cells

December 2016

By incorporating an absorber, we can electrically modulate the light trapping.

Polymer dispersed liquid crystals

- Mix of birefringent liquid crystals and polymer
- With no bias: randomly oriented by local fields and thermal energy
 - Scatter
- With bias: ordinary axes align to electric field
 - No scattering

Switchable light trapping for solar smart windows

Murray, Ma, and Munday ACS Photonics (in press) DOI: 10.1021/acsphotonics.6b00518

Video of switching

Murray, Ma, and Munday ACS Photonics (in press) DOI: 10.1021/acsphotonics.6b00518

December 2016

Measured and modeled absorption

Murray, Ma, and Munday ACS Photonics (in press) DOI: 10.1021/acsphotonics.6b00518

Scattering for non-normal incidence improves power generation, while keeping normal incidence transmission

Murray, Ma, and Munday ACS Photonics (in press) DOI: 10.1021/acsphotonics.6b00518

Video of viewing angle dependence

Murray, Ma, and Munday ACS Photonics (in press) DOI: 10.1021/acsphotonics.6b00518

December 2016

Active control of light trapping for a smart solar window

Outline

Murray, Ma, and Munday ACS Photonics (in press 2017) DOI: 10.1021/acsphotonics.6b00518

Tunable radiation pressure for space propulsion

Ma, Murray, and Munday Advanced Optical Materials (accepted 2017)

Hot carrier detectors and energy converters

Gong and Munday, *Nano Lett.* 15, 147–152 (2015)

- Each photon carries momentum $P_{photon} = \frac{h}{\lambda}$
- Generates a force when it's reflected or absorbed

Measurement of radiation pressure

D. Ma, J.L. Garrett, and J.N. Munday, Appl. Phys. Lett. 091107, 4 (2015).

December 2016

Application of radiation pressure: Solar sailing

Solar sail (wind → photons)

- Benefits
 - No fuel/propellant
 - Small constant force (acceleration) can lead to large velocities
- Limitations
 - Currently attitude control still requires propellant or mechanical motion

Solution: Steering and attitude control via switchable reflectivity

The idea: Radiation pressure for steering

Determination of direct transmission as a function of voltage

Jeremy N. Munday – University of Maryland

December 2016

Angular distribution measurement

Large switchability of momentum transfer throughout the solar spectrum

Weighted average momentum switchability: $\Delta p \approx 0.5 p_0$

Ma, Murray, and Munday Adv. Optical Mat. (accepted 2017)

Thinner devices consume less power and require less voltage, but have less switchability

Next step: flexible devices

December 2016

Solar sail in deployment testing room (NASA)

Outline

Active control of light trapping for a smart solar window Murray, Ma, and Munday ACS Photonics (in press 2017) DOI: 10.1021/acsphotonics.6b00518 **Tunable radiation pressure for** space propulsion Ma, Murray, and Munday Advanced Optical Materials (accepted 2017) Hot carrier detectors and energy converters Gong and Munday, Nano Lett. 15, 147–152 (2015)

Surface plasmons for light confinement

Problems: Strong optical loss

the strong optical loss?

Step 3: Carrier collection

insulato, metal

TCO

Incident light

Step 2: Hot carrier transport

Step 1: Absorption and hot carrier generation

Absorption predominantly in Au layer

Experiments

Gong and Munday, Nano Lett. 15, 147–152 (2015)

Power generation: Photoresponse under monochromatic light illumination and bias

Calculations

Experiments

Gong and Munday, *Nano Lett.* 15, 147–152 (2015)

Outreach and broader impacts of research from the Munday Lab

Jeremy N. Munday – University of Maryland

Coleman D

Conclusions

Our Team:

Taqiyyah Safi, Donghoen Ha, Yunlu Xu, David Somers, Tao Gong, Joe Garret, Dakang Ma, Joe Murray, Lisa Krayer, Tarun Narayan

Funding Acknowledgement:

 NASA: Early Career Faculty Space Technology Research Award, NASA Smallsat Technology Partnership (STP)
National Science Foundation: CBET, AMO, and CAREER
ONR: Young Investigator Program (YIP)
Google

Contact me: jnmunday@umd.edu Website: mundaylab.umd.edu