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ABSTRACT: The ability to electrically control transparency and
scattering of light is important for many optoelectronic devices;
however, such versatility usually comes with additional unwanted
optical absorption and power loss. Here we present a hybrid
switchable solar window device based on polymer dispersed liquid
crystals (PDLCs) coupled to a semiconducting absorber, which
can switch between highly transmissive and highly scattering states
while simultaneously generating power. By applying a voltage
across the PDLC layer, the device switches from an opaque, light-
scattering structure (useful for room light dimming, privacy, and
temperature control) to a clear, transparent window. Further, enabled by the very low operating power requirements of the
PDLC (<0.8 mW/cm2), we demonstrate that these switchable solar windows have the potential for self-powering with as little as
13 nm of a-Si.
KEYWORDS: photovoltaics, smart window, liquid crystal, light trapping

In order to absorb a significant fraction of the incident solar
irradiation, thin-film photovoltaic devices require light

trapping and scattering.1−7 However, for some applications,
such as building-integrated photovoltaics (BIPV),8−22 partial
absorption is preferred to enable operation as a semitransparent
window. The basic trade-off between power generation and
window transparency must be decided a priori. An alternative
technology, switchable smart windows, has recently gained
considerable interest for both privacy and climate control,23 and
these smart windows have been designed to modulate their
optical transmission using a wide range of mechanisms
including electrochromism,15,23−27 thermochromism,20,28−30

and liquid crystal alignment.14,23,26,31−34 These devices often
target control of sunlight to reduce heating and cooling loads or
to enhance user comfort by modifying the intensity/spectrum
of solar irradiance entering the building.23,24,35 Some smart
windows have demonstrated mechanical self-powering or
automatic response to changing conditions25,27,34,36,37 using
photovoltaics or a chemical process that responds to light or
heat. However, they work by modifying the absorptivity of the
switching material, which results in wasted energy from the
incident light.
Here we present a self-powered switchable smart window

concept that enables variable transmissivity, diffusivity, and
power generation on-demand that can be adjusted throughout
the day. The design consists of a thin absorbing layer (a-Si) and
an actively tunable scattering material (polymer-dispersed
liquid crystal) that allows the device to switch between a low-
power-generating transparent state (1.9 mW/cm2) and a high-
power-generating diffuse state (3.2 mW/cm2) for a 28 nm a-Si

film. The power required to operate the device is <0.8 mW/
cm2, showing that under typical solar illumination it is self-
powering.
To switch between a transparent and diffuse state, the device

incorporates a polymer-dispersed liquid crystal (PDLC) layer
(Figure 1), which is composed of microdroplets of a liquid
crystal (LC) material dispersed in a polymer matrix. As
expected, in its OFF state (no applied voltage), PDLCs strongly
scatter light, appearing hazy or opaque due to light scattering
from the random orientation of the liquid crystals, resulting in
refractive index variation throughout the material. When
enough voltage is applied across the film, the liquid crystal
alignment reduces the refractive index contrast for light
traveling parallel to the alignment direction, and the material
becomes highly transparent owing to the suppressed
scattering.38 Since its original discovery,39 researchers have
extensively explored the potential applications of PDLCs in the
areas of flat panel displays,40,41 smart windows,26,42 and
microlenses.43 Nematic liquid crystals are the most common
type employed in PDLC devices. The droplets are optically
birefringent with ordinary refractive index no along two optical
axes and extraordinary refractive index ne along the third axis.
The polymer is optically isotropic with refractive index np. In
the absence of an applied electric field (OFF state), the optical
axes of individual droplets align approximately randomly,
resulting in spatial variations of refractive index across the
film, which cause strong light scattering. In the presence of an
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calculated (solid lines), as well as the absorption in individual
layers (represented by the colored areas). Note that the data for
both ITO layers (top and bottom) are combined in this plot.
The absorption in the individual layers is calculated by
determining the total electric field power density in each
layer (adding reflections/transmissions from thin films
coherently) and using the absorption coefficient for each
material (see SI). In the OFF (i.e., diffusive) state, the data are
calculated following ref 47 under the assumption that light
entering the PDLC becomes fully randomized, which is
supported by internal scattering measurements47 (see SI).
ON state calculations assume no scattering. The total measured
and calculated data are in close agreement with RMS errors of
0.43%, 1.3%, 2.4%, and 0.48% (absolute) for the data in Figure
2a−d, respectively.
After determining the total absorption within the a-Si layer,

we calculate the expected power generation from a complete
photovoltaic cell incorporated into the switchable solar window
and determine the potential for self-powering. While
developing a high-performance a-Si solar cell is beyond the
scope of this work, we calculate short-circuit current density

based on the measured absorption within the a-Si layer of the
PDLC device (Figure 2a−d), weighted by the AM1.5G solar
spectrum. The short-circuit current density is used to
determine the generated power density (Figure 2f) using a
single diode model, where the reverse saturation current is
obtained by extrapolation from experimental data of a high-
quality a-Si solar cell49,50 (see SI). The dotted line in Figure 2f
indicates the threshold for self-powering, given by the power
consumption of the PDLC device in the ON state divided by
the area of the cell (3.14 cm2), as described below.
The measured power consumption within the PDLC layer is

determined in two steps because of the large dynamic range
required for the measurement (∼6 orders of magnitude); see
Figure 3. First, the power is measured during the charging and
discharging of the PDLC (driven by a square wave at 200 Hz)
due to its capacitance. Second, the power is measured during
steady-state current operation, which is found to be 3.5 μA,
corresponding to a shunt resistance of 42 MΩ. Figure 3a shows
the voltage applied across the device as a function of time, and
Figure 3b,c shows a zoom-in of the voltage, current, and power
used during a polarity switching event (shaded region in Figure

Figure 2. (a−d) Measured (circles) and calculated (shaded areas) absorption for devices with two a-Si thicknesses (13 nm (a, c) and 28 nm (b, d))
in the OFF state (a, b) and the ON state (c, d). The absorption is calculated in each material, and the total absorption is measured. Calculated (e)
short-circuit current density and (f) power generation density are shown with the self-powering threshold marked as a dashed line.
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ABSTRACT: The ability to electrically control transparency and
scattering of light is important for many optoelectronic devices;
however, such versatility usually comes with additional unwanted
optical absorption and power loss. Here we present a hybrid
switchable solar window device based on polymer dispersed liquid
crystals (PDLCs) coupled to a semiconducting absorber, which
can switch between highly transmissive and highly scattering states
while simultaneously generating power. By applying a voltage
across the PDLC layer, the device switches from an opaque, light-
scattering structure (useful for room light dimming, privacy, and
temperature control) to a clear, transparent window. Further, enabled by the very low operating power requirements of the
PDLC (<0.8 mW/cm2), we demonstrate that these switchable solar windows have the potential for self-powering with as little as
13 nm of a-Si.
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In order to absorb a significant fraction of the incident solar
irradiation, thin-film photovoltaic devices require light

trapping and scattering.1−7 However, for some applications,
such as building-integrated photovoltaics (BIPV),8−22 partial
absorption is preferred to enable operation as a semitransparent
window. The basic trade-off between power generation and
window transparency must be decided a priori. An alternative
technology, switchable smart windows, has recently gained
considerable interest for both privacy and climate control,23 and
these smart windows have been designed to modulate their
optical transmission using a wide range of mechanisms
including electrochromism,15,23−27 thermochromism,20,28−30

and liquid crystal alignment.14,23,26,31−34 These devices often
target control of sunlight to reduce heating and cooling loads or
to enhance user comfort by modifying the intensity/spectrum
of solar irradiance entering the building.23,24,35 Some smart
windows have demonstrated mechanical self-powering or
automatic response to changing conditions25,27,34,36,37 using
photovoltaics or a chemical process that responds to light or
heat. However, they work by modifying the absorptivity of the
switching material, which results in wasted energy from the
incident light.
Here we present a self-powered switchable smart window

concept that enables variable transmissivity, diffusivity, and
power generation on-demand that can be adjusted throughout
the day. The design consists of a thin absorbing layer (a-Si) and
an actively tunable scattering material (polymer-dispersed
liquid crystal) that allows the device to switch between a low-
power-generating transparent state (1.9 mW/cm2) and a high-
power-generating diffuse state (3.2 mW/cm2) for a 28 nm a-Si

film. The power required to operate the device is <0.8 mW/
cm2, showing that under typical solar illumination it is self-
powering.
To switch between a transparent and diffuse state, the device

incorporates a polymer-dispersed liquid crystal (PDLC) layer
(Figure 1), which is composed of microdroplets of a liquid
crystal (LC) material dispersed in a polymer matrix. As
expected, in its OFF state (no applied voltage), PDLCs strongly
scatter light, appearing hazy or opaque due to light scattering
from the random orientation of the liquid crystals, resulting in
refractive index variation throughout the material. When
enough voltage is applied across the film, the liquid crystal
alignment reduces the refractive index contrast for light
traveling parallel to the alignment direction, and the material
becomes highly transparent owing to the suppressed
scattering.38 Since its original discovery,39 researchers have
extensively explored the potential applications of PDLCs in the
areas of flat panel displays,40,41 smart windows,26,42 and
microlenses.43 Nematic liquid crystals are the most common
type employed in PDLC devices. The droplets are optically
birefringent with ordinary refractive index no along two optical
axes and extraordinary refractive index ne along the third axis.
The polymer is optically isotropic with refractive index np. In
the absence of an applied electric field (OFF state), the optical
axes of individual droplets align approximately randomly,
resulting in spatial variations of refractive index across the
film, which cause strong light scattering. In the presence of an

Received: July 22, 2016
Published: October 26, 2016

Letter

pubs.acs.org/journal/apchd5

© XXXX American Chemical Society A DOI: 10.1021/acsphotonics.6b00518
ACS Photonics XXXX, XXX, XXX−XXX

Murray,	Ma,	and	Munday	ACS	Photonics	(in	press	2017)		
DOI:	10.1021/acsphotonics.6b00518	

Ma,	Murray,	and	Munday	Advanced	Op;cal	Materials	
(accepted	2017)		

Gong	and	Munday,	Nano	LeD.	15,	147–152	(2015)	



Jeremy	N.	Munday	–	University	of	Maryland	December	2016	

RadiaVon	pressure	

•  Each	photon	carries	momentum		
•  Generates	a	force	when	it’s	reflected	or	absorbed	
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Measurement	of	radiaVon	pressure	
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ApplicaVon	of	radiaVon	pressure:	Solar	sailing	
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Benefits	and	limitaVons	of	current	solar	sails	

•  Benefits	
– No	fuel/propellant	
– Small	constant	force	(acceleraVon)	can	lead	to	
large	velociVes	

•  LimitaVons	
– Currently	aptude	control	sVll	requires	propellant	
or	mechanical	moVon	
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Solution: Steering and attitude control  
via switchable reflectivity 
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The	idea:	RadiaVon	pressure	for	steering	
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DeterminaVon	of	direct	transmission	
as	a	funcVon	of	voltage	
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Angular	distribuVon	measurement	
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Large	switchability	of	momentum	transfer	throughout	
the	solar	spectrum	
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Thinner	devices	consume	less	power	and	require	less	
voltage,	but	have	less	switchability	
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Next	step:	flexible	devices	
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Solar	sail	in	deployment	tesVng	room	(NASA)	
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Outline	

•  AcVve	control	of	light	trapping	
for	a	smart	solar	window	

	
•  Tunable	radiaVon	pressure	for	
space	propulsion	
		

•  Hot	carrier	detectors	and	
energy	converters 		
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Electrically Controllable Light Trapping for Self-Powered Switchable
Solar Windows
Joseph Murray,†,‡ Dakang Ma,†,‡ and Jeremy N. Munday*,†,‡

†Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
‡Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740, United States

*S Supporting Information

ABSTRACT: The ability to electrically control transparency and
scattering of light is important for many optoelectronic devices;
however, such versatility usually comes with additional unwanted
optical absorption and power loss. Here we present a hybrid
switchable solar window device based on polymer dispersed liquid
crystals (PDLCs) coupled to a semiconducting absorber, which
can switch between highly transmissive and highly scattering states
while simultaneously generating power. By applying a voltage
across the PDLC layer, the device switches from an opaque, light-
scattering structure (useful for room light dimming, privacy, and
temperature control) to a clear, transparent window. Further, enabled by the very low operating power requirements of the
PDLC (<0.8 mW/cm2), we demonstrate that these switchable solar windows have the potential for self-powering with as little as
13 nm of a-Si.
KEYWORDS: photovoltaics, smart window, liquid crystal, light trapping

In order to absorb a significant fraction of the incident solar
irradiation, thin-film photovoltaic devices require light

trapping and scattering.1−7 However, for some applications,
such as building-integrated photovoltaics (BIPV),8−22 partial
absorption is preferred to enable operation as a semitransparent
window. The basic trade-off between power generation and
window transparency must be decided a priori. An alternative
technology, switchable smart windows, has recently gained
considerable interest for both privacy and climate control,23 and
these smart windows have been designed to modulate their
optical transmission using a wide range of mechanisms
including electrochromism,15,23−27 thermochromism,20,28−30

and liquid crystal alignment.14,23,26,31−34 These devices often
target control of sunlight to reduce heating and cooling loads or
to enhance user comfort by modifying the intensity/spectrum
of solar irradiance entering the building.23,24,35 Some smart
windows have demonstrated mechanical self-powering or
automatic response to changing conditions25,27,34,36,37 using
photovoltaics or a chemical process that responds to light or
heat. However, they work by modifying the absorptivity of the
switching material, which results in wasted energy from the
incident light.
Here we present a self-powered switchable smart window

concept that enables variable transmissivity, diffusivity, and
power generation on-demand that can be adjusted throughout
the day. The design consists of a thin absorbing layer (a-Si) and
an actively tunable scattering material (polymer-dispersed
liquid crystal) that allows the device to switch between a low-
power-generating transparent state (1.9 mW/cm2) and a high-
power-generating diffuse state (3.2 mW/cm2) for a 28 nm a-Si

film. The power required to operate the device is <0.8 mW/
cm2, showing that under typical solar illumination it is self-
powering.
To switch between a transparent and diffuse state, the device

incorporates a polymer-dispersed liquid crystal (PDLC) layer
(Figure 1), which is composed of microdroplets of a liquid
crystal (LC) material dispersed in a polymer matrix. As
expected, in its OFF state (no applied voltage), PDLCs strongly
scatter light, appearing hazy or opaque due to light scattering
from the random orientation of the liquid crystals, resulting in
refractive index variation throughout the material. When
enough voltage is applied across the film, the liquid crystal
alignment reduces the refractive index contrast for light
traveling parallel to the alignment direction, and the material
becomes highly transparent owing to the suppressed
scattering.38 Since its original discovery,39 researchers have
extensively explored the potential applications of PDLCs in the
areas of flat panel displays,40,41 smart windows,26,42 and
microlenses.43 Nematic liquid crystals are the most common
type employed in PDLC devices. The droplets are optically
birefringent with ordinary refractive index no along two optical
axes and extraordinary refractive index ne along the third axis.
The polymer is optically isotropic with refractive index np. In
the absence of an applied electric field (OFF state), the optical
axes of individual droplets align approximately randomly,
resulting in spatial variations of refractive index across the
film, which cause strong light scattering. In the presence of an
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Surface	plasmons	for	light	confinement	

28	

Propagating Plasmon Localized Plasmon 

Lycurgus	Cup	

Benefits	of	plasmonics:	high	field	intensiVes	
Problems:	Strong	opVcal	loss	

Can	 we	 take	 advantage	 of	
the	strong	op*cal	loss?	
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Step	 2:	 Hot	 carrier	
transport	

Step	3:		Carrier	collecVon	

Step	1:	AbsorpVon	and		
hot	carrier	generaVon	

Incident	light	



Jeremy	N.	Munday	–	University	of	Maryland	December	2016	

SimulaVon	of	a	planar	TCO	hot	carrier	device	
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AbsorpVon	predominantly	in	Au	layer	

Gong	and	Munday,	Nano	LeD.	15,	147–152	(2015)	
	

Au	+	ITO	

Au	

ITO	

connected to a Keithley 2400 SourceMeter, acting as a voltage
source and current meter, and to a SR830 DSP lock-in
amplifier.
Device Design and Modeling. The performance of a hot

carrier device can be determined by considering the following
processes: (i) photon absorption, (ii) hot carrier generation,
(iii) hot carrier propagation, and (iv) subsequent collection.
The detailed modeling for each process15,26−35 is elaborated in
Supporting Information Note 1. Figure 1 shows the predicted
performance of a simple planar structure consisting of indium
tin oxide (30 nm)−aluminum oxide (5 nm)−gold (80 nm)
under illumination. The indium tin oxide (ITO) acts as the
transparent conductor and the aluminum oxide (Al2O3) is used
as the thin insulating barrier to separate ITO and Au. For
illumination wavelengths between 300 and 600 nm, absorption
predominantly occurs in the Au, leading to a highly anisotropic
absorption profile (Figure 1a, c). This exponential decay in the
Au promotes electrons in the Fermi gas to higher energy states,
simultaneously leaving behind empty hole states. This process
leads to preferential hot carrier generation near the Au−Al2O3
interface. These hot carriers will subsequently diffuse, during
which time they are scattered by the electron gas. The time
scale of the electron−electron interaction is ∼500 fs18,36 for
gold; thereafter, these carriers thermally relax producing heat by
electron−phonon scattering. Therefore, only a fraction of the
carriers find their way to the Au−Al2O3 interface. Depending
upon the energy and momentum of the carriers that reach the
interface, they will either traverse or tunnel through the
insulating barrier, ultimately being collected as photocurrent at
the ITO electrode (Figure 1b). Because of the preferential
absorption in Au, the carriers predominately flow from Au to
ITO with a voltage established by the energy barrier between
the two electrodes. Thus, for the hot carrier device, the
electrodes function as the light absorber, carrier emitter, and
carrier collector simultaneously.
Once the absorption is calculated within the device, the

optoelectronic response can be determined. The photo-
current−voltage (I−V) characteristic for the device is obtained
by the summation of the four current contributions arising from
the hot electrons and hot holes from both electrodes
(Supporting Information Note 1)
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where the four current components denote the directional hot
electron and hole flows (Ie and Ih) between the two electrodes
(Au and ITO). The currents depend on the incident spectrum,
spatially dependent absorption, bias voltage, electron density of
states (EDOS), bandgap of the oxide, barrier height (ΦB), and
the mean-free-paths (MFP) of the carriers. The barrier height
at the interface is 0.4 eV for the calculation of optimal
performance26 and the MFPs of Au and ITO are obtained from
the literature.26,27,37−39 Figure 1d shows the calculated I−V
response under AM 1.5G solar illumination. For V < 0, the
photocurrent increases slowly with increasing negative bias,
indicating that most of the current comes from hot electrons
flowing from the Au to ITO. These electrons have high enough
energy to directly traverse the barrier. Alternatively, for V > 0,
the total current drops faster with increasing bias. In this region,
the barrier height seen by the hot electrons in Au is increased
and tunneling becomes necessary for those electrons with lower
energy (ΦB < ξ < ΦB + qV), thus causing a faster decrease in
the current. With larger bias, the current flow becomes negative
as reverse electron flow from the ITO to the Au dominates the
total current. Meanwhile, the hot electrons generated in Au will
find no empty states in ITO to occupy. The contribution to the
currents due to the hot holes is also considered; however, their
contribution is negligible due to the much larger energy barrier
experienced by the hot holes. The overall power conversion
efficiency (PCE) is calculated to be 0.95%, which is eight times
the value of a planar Au−Al2O3−Au junction under normal
incidence illumination.26 For monochromatic illumination at
shorter wavelengths, the PCE can reach 3.1% (Supporting
Information Table 1), which is comparable to the results of the
planar Au−Al2O3−Au junction with the Kretchmann SPP
prism coupling;26 however, no special coupling mechanism is
necessary for the TCO-based structure.
Another important parameter associated with the I−V

characteristic is the fill factor (FF), defined by FF =
(ImaxVmax)/(IscVoc), where Imax and Vmax are the current and
voltage at max power and Isc and Voc are the short circuit
current and open circuit voltage, respectively. A larger fill factor
corresponds to a more rectangular I−V curve, and hence a
higher efficiency device. In our device, the fill factor (Figure 1d)
can be improved by modifying the EDOS. To determine the
effect of EDOS modification on the device characteristic, two
simple models were considered. First, for the above
calculations, the EDOS in the metal is assumed to be parabolic,

Figure 2. Experimental characterization of the hot carrier device. (a) Photoresponse of the device with respect to the incident wavelength. The
photoresponse (left axis) mimics the absorption spectrum (right axis), but the peaks occur at different wavelengths due to the internal carrier
emission efficiency, which increases as the wavelengths gets shorter. Inset shows the device cross-junction under 5× optical magnification using a
monochrome CCD (false colored for clarity). (b) Photoresponse under biased white light illumination. (c) Photocurrent changes linearly with
incident white light power, indicating that the hot carrier generation is a linear process.
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Power	generaVon:	Photoresponse	under	
monochromaVc	light	illuminaVon	and	bias	

31	

as it would be for a free electron gas. Under this assumption,
the generated hot electrons (holes) possess a nearly uniform
energy distribution above (below) the Fermi level. Therefore, a
large fraction of the hot carriers have an energy lower than the
barrier height, which makes traversing the barrier less probable.
The efficiency can be further improved if the electrons in the
Fermi gas before excitation possess a nonparabolic EDOS. For
the second model, we consider the EDOS to have a peak
distribution of carriers close to but below the Fermi level, as
described below. For most metals, the EDOS is not perfectly
parabolic and depends on the crystallography and film
thickness. The resulting EDOS may also contain many peaks
due to the overlapping bands. For hot carrier generation and
collection, the ideal case occurs when most of the electrons in
the Fermi gas possess an energy in the vicinity of the Fermi
level, ξf, before excitation, which is thought to occur in some
noble metals.33 After illumination, almost all excited hot
electrons would be distributed in a narrow energy range above
the barrier height (Supporting Information Figure 1a). For this
case, nearly all hot electrons can traverse the barrier even under
positive bias, and the fill factor in the power generation region
is significantly improved from 19% to 44% (Supporting
Information Figure 1b). In this model, we modify the EDOS
by assigning an effective conduction bandedge to be 0.15 eV
below the Fermi level.33 As a result, the PCE improves to 2.33%
under AM1.5G solar illumination and reaches 10.7% at short
wavelength illumination (Supporting Information Table 2).
More substantial EDOS modification may be possible through
the utilization of silicide alloys or by exploiting quantum
confinement effects in nanoscale materials.40,41

Photoresponse under Monochromatic and Broad-
band Illumination. The photoresponse of the device was
experimentally determined over a wavelength range of 400−
700 nm and was found to exhibit increased photocurrent for
short wavelengths (Figure 2a). The enhanced photoresponse is
due to the large absorption at the Au surface relative to the
absorption in the ITO. The photoresponse is consistent with
the simulated light absorption spectrum, which is also observed
in Au−Si photodetectors.13−15,18 The photoresponse and the
absorption differ slightly because the photoresponse depends
on both the hot carrier emission/collection and the absorption.
Under white light illumination, the hot carrier device is found
to generate nearly constant current under both forward and
reverse bias (Figure 2b), as expected. Further, hot carrier
generation is shown to be a single photon−hot carrier

interaction by the linearity of the photocurrent with incident
light power for both white light and monochromatic light
illumination. (Figures 2c and 3c).

Wavelength-Dependent Hot Carrier Generation and
Collection. The I−V characteristic under monochromatic
illumination is determined, showing both voltage independent
photoresponse for small bias (|V| < 0.2 V) and, for larger bias,
an open circuit voltage (Voc) that varies with incident photon
energy, as expected for an M−I−M hot carrier device (Figure
3a and b). The experimental photoresponse is found to be in
good agreement with the model presented here (Figure 3b)
throughout the ±0.2 V bias range. Under larger bias, the
measurements were unstable due to increased noise and
electrical device breakdown. When the theoretical model is
extended to higher bias, a wavelength dependent Voc is
predicated, which is an order of magnitude larger than previous
results, suggesting improved application as a wavelength
sensitive hot carrier detector.42

The stable photoresponse under bias variation (±0.2 V)
shows that this device can also be used in situations where the
voltage changes due to (i) variation in potential during
operation, (ii) source fluctuations or noise, or (iii) power
interruptions. This voltage stability has not been observed in
previous M−I−M hot carrier devices.
In order to achieve the idealized photoresponse shown in

Figure 1d, several additional considerations need to be made.
First, the barrier height ΦB∼ 0.4 eV in our simulation is
optimized. In reality, the barrier height and the bandgap of the
Al2O3 film strongly depend on the details of the interface,
which may vary significantly with the fabrication methods and
surface treatment even for similar interfaces.26,39 The barrier
height extracted from our dark I−V measurements by applying
the Fowler-Nordheim model43 is found to be 20 meV
(Supporting Information Figure 3 and Note 2). The much
lower barrier height, which probably arises from interface
effects such as surface traps, defects, and interface dipoles,44−46

dramatically increases thermionic emission from the bottom
electrode, reducing the overall current and the ultimate
efficiency.26 Second, surface recombination44,45 at the interface
on both sides due to trap states would significantly increase the
loss of the carriers, which necessitates the incorporation of loss
of carriers in the calculation to fit the experimental data (Figure
3b). Third, the inelastic scattering with the Fermi gas could
cause additional energy loss of the hot carriers, allowing fewer
of them to reach the interface with sufficient energy.

Figure 3. Photoresponse under monochromatic light illumination. (a) Calculated photoresponse showing the Voc increase with incident photon
energy, as expected for a hot carrier device. (b) Zoom of the photoresponse−voltage relation (between −0.2 V to +0.2 V, shaded region in (a)) of
the device under monochromatic illumination (400, 500, 600, and 700 nm). Markers represent experimental data, while solid lines represent fits
from the hot carrier device model. (c) Photocurrent changes linearly with incident power for each illumination wavelength, further confirming the
linearity of the hot carrier generation process.
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as it would be for a free electron gas. Under this assumption,
the generated hot electrons (holes) possess a nearly uniform
energy distribution above (below) the Fermi level. Therefore, a
large fraction of the hot carriers have an energy lower than the
barrier height, which makes traversing the barrier less probable.
The efficiency can be further improved if the electrons in the
Fermi gas before excitation possess a nonparabolic EDOS. For
the second model, we consider the EDOS to have a peak
distribution of carriers close to but below the Fermi level, as
described below. For most metals, the EDOS is not perfectly
parabolic and depends on the crystallography and film
thickness. The resulting EDOS may also contain many peaks
due to the overlapping bands. For hot carrier generation and
collection, the ideal case occurs when most of the electrons in
the Fermi gas possess an energy in the vicinity of the Fermi
level, ξf, before excitation, which is thought to occur in some
noble metals.33 After illumination, almost all excited hot
electrons would be distributed in a narrow energy range above
the barrier height (Supporting Information Figure 1a). For this
case, nearly all hot electrons can traverse the barrier even under
positive bias, and the fill factor in the power generation region
is significantly improved from 19% to 44% (Supporting
Information Figure 1b). In this model, we modify the EDOS
by assigning an effective conduction bandedge to be 0.15 eV
below the Fermi level.33 As a result, the PCE improves to 2.33%
under AM1.5G solar illumination and reaches 10.7% at short
wavelength illumination (Supporting Information Table 2).
More substantial EDOS modification may be possible through
the utilization of silicide alloys or by exploiting quantum
confinement effects in nanoscale materials.40,41

Photoresponse under Monochromatic and Broad-
band Illumination. The photoresponse of the device was
experimentally determined over a wavelength range of 400−
700 nm and was found to exhibit increased photocurrent for
short wavelengths (Figure 2a). The enhanced photoresponse is
due to the large absorption at the Au surface relative to the
absorption in the ITO. The photoresponse is consistent with
the simulated light absorption spectrum, which is also observed
in Au−Si photodetectors.13−15,18 The photoresponse and the
absorption differ slightly because the photoresponse depends
on both the hot carrier emission/collection and the absorption.
Under white light illumination, the hot carrier device is found
to generate nearly constant current under both forward and
reverse bias (Figure 2b), as expected. Further, hot carrier
generation is shown to be a single photon−hot carrier

interaction by the linearity of the photocurrent with incident
light power for both white light and monochromatic light
illumination. (Figures 2c and 3c).

Wavelength-Dependent Hot Carrier Generation and
Collection. The I−V characteristic under monochromatic
illumination is determined, showing both voltage independent
photoresponse for small bias (|V| < 0.2 V) and, for larger bias,
an open circuit voltage (Voc) that varies with incident photon
energy, as expected for an M−I−M hot carrier device (Figure
3a and b). The experimental photoresponse is found to be in
good agreement with the model presented here (Figure 3b)
throughout the ±0.2 V bias range. Under larger bias, the
measurements were unstable due to increased noise and
electrical device breakdown. When the theoretical model is
extended to higher bias, a wavelength dependent Voc is
predicated, which is an order of magnitude larger than previous
results, suggesting improved application as a wavelength
sensitive hot carrier detector.42

The stable photoresponse under bias variation (±0.2 V)
shows that this device can also be used in situations where the
voltage changes due to (i) variation in potential during
operation, (ii) source fluctuations or noise, or (iii) power
interruptions. This voltage stability has not been observed in
previous M−I−M hot carrier devices.
In order to achieve the idealized photoresponse shown in

Figure 1d, several additional considerations need to be made.
First, the barrier height ΦB∼ 0.4 eV in our simulation is
optimized. In reality, the barrier height and the bandgap of the
Al2O3 film strongly depend on the details of the interface,
which may vary significantly with the fabrication methods and
surface treatment even for similar interfaces.26,39 The barrier
height extracted from our dark I−V measurements by applying
the Fowler-Nordheim model43 is found to be 20 meV
(Supporting Information Figure 3 and Note 2). The much
lower barrier height, which probably arises from interface
effects such as surface traps, defects, and interface dipoles,44−46

dramatically increases thermionic emission from the bottom
electrode, reducing the overall current and the ultimate
efficiency.26 Second, surface recombination44,45 at the interface
on both sides due to trap states would significantly increase the
loss of the carriers, which necessitates the incorporation of loss
of carriers in the calculation to fit the experimental data (Figure
3b). Third, the inelastic scattering with the Fermi gas could
cause additional energy loss of the hot carriers, allowing fewer
of them to reach the interface with sufficient energy.

Figure 3. Photoresponse under monochromatic light illumination. (a) Calculated photoresponse showing the Voc increase with incident photon
energy, as expected for a hot carrier device. (b) Zoom of the photoresponse−voltage relation (between −0.2 V to +0.2 V, shaded region in (a)) of
the device under monochromatic illumination (400, 500, 600, and 700 nm). Markers represent experimental data, while solid lines represent fits
from the hot carrier device model. (c) Photocurrent changes linearly with incident power for each illumination wavelength, further confirming the
linearity of the hot carrier generation process.
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In the above carrier transmission calculation, several reasonable approximations are 

made, which could be further refined in future calculations. Ideally, the electrons with 

energy greater than the barrier height will all traverse the barrier. However, only the 

carriers with high enough momentum component in the normal direction to the 

interface could possibly overcome the barrier directly.5 However, while traversing 

the barrier, carriers could be subject to scattering or other energy or momentum loss 

processes6 due to the potential energy gradient across the junction, especially under 

bias. This effect makes the transmission probability different between the two 

directions (Au to ITO and ITO to Au) and always lower than unity. In addition, the 

image potential caused by an image charge induced by a hot carrier when traversing 

the barrier would also have an interaction with the traversing carrier, which would 

effectively reduce the height and width of the barrier.4 

 

Supplemental Note 2 | Barrier height and dark current of an M-I-M junction. 

The energy barrier height for the excited carriers is determined from the dark current 

measurement of the M-I-M device based on the Fowler-Nordheim equation.2 The 

emission rate of electrons from a metal surface through a barrier is given by: 

! = !!!!
!!!!

exp
−!! !∗

!!
!!!

!
!

!  

where ! is the applied voltage, ! is the barrier thickness, !! is the barrier height, 

!∗ is the effective mass of the electrons in the oxide, assumed to be the electron rest 
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