What Can Cells Teach Us About Computing?

Pamela Abshire

Dept. of Electrical and Computer Engineering & Institute for Systems Research University of Maryland, College Park

Honoring Those Who Came Before

Carl Freidrich Gauss

Andreas Gregory Andreou

Cogito, ergo sum – René Descartes, 1641

What is computing?

- goal-oriented activity requiring, benefiting from, or associated with the creation and use of computers
 - Computing Curricula 2020 (ACM & IEEE)
- designing and constructing hardware and software systems for a wide range of purposes:
 - processing, structuring, and managing various kinds of information
 - problem solving by finding solutions to problems or by proving a solution does not exist
 - making computer systems behave intelligently
 - creating and using communications and entertainment media
 - finding and gathering information relevant to any particular purpose

What is computing? Do cells compute?

- goal-oriented activity requiring, benefiting from, or associated with the creation and use of computers
 - Computing Curricula 2020 (ACM & IEEE)
- designing and constructing hardware and software systems for a wide range of purposes:
 - processing, structuring, and managing various kinds of information
 - problem solving by finding solutions to problems or by proving a solution does not exist
 - making computer systems behave intelligently
 - creating and using communications and entertainment media
 - finding and gathering information relevant to any particular purpose

Animalcules

- Microscopic organisms observed by 17th-century Dutch scientist Antonie van Leeuwenhoek in rainwater
 - Single lens 300X microscope
- Directed movements and capabilities were a great source of fascination

Complex Networks in Biology

Mycorrhizal networks -- the wood wide web

Macromolecule networks

Adapted from Liu et al. Nat Commun 11, 6043 (2020)

86 billion neurons 85 billion glia 125 trillion synapses

Ramón y Cajal, Estructura de los centros nerviosos de las aves, 1905

Nature's nearly optimal: Information-Power efficiency in wetware & Si

Quick history of energy cost of computing

Transduction pathway of blowfly photoreceptor

with Andreas Andreou (JHU)

Linearized system model of blowfly photoreceptor

with Andreas Andreou (JHU)

Compare biological & silicon photoreceptors

Biology more efficient at low intensities

although silicon can be more efficient at high intensities

Artificial Neural Networks

McCulloch and Pitts 1943

- First mathematical model of a neuron
- Nonlinearity modeled with threshold
- Model any logical function
- No learning

Perceptron (Rosenblatt) 1958

Introduces learning

McCulloch & Pitts, Bulletin of Math. Biophysics, 5 (1943)

Rosenblatt, Psychological Review 65(6): 386-408 (1958)

What computations do real neurons perform?

- Normalization
- Averaging
- Logical functions
- Thresholding
- Synaptic adaptation
 - Long term potentiation and depression
 - Spike time dependent plasticity
 - Short term facilitation and depression
 - Homeostatic synaptic plasticity

Contrast normalization in vertebrate retina

Gray, Anatomy of the Human Body (1918)

Synaptic plasticity: changes in strength over time

Blitz et al. Nat Rev Neurosci 5, 630-640 (2004)

Bi & Poo, J Neurosci. 18(24):10464 (1998)

n

Spike timing (ms)

0

80

How can we learn to make better circuits?

- Engineering *is* efficient use of resources
- Conventional electronics: analog sensor readings converted to digital, then calibrated digitally
 - High price (size, complexity, power) for high precision
- Biology uses cheap, inaccurate components with adaptation (lots of it)
- SWaP matters! What if you could automatically "fix" analog computers?
- Integrated circuits with local storage and autonomous feedback to:
 - Cancel fabrication errors
 - Adjust to changing conditions / task demands

My "fearless" idea

• Why can't we do this for neurons too???

Opportunity for Technology Convergence

Let's use synaptic plasticity as an engineering tool! Technology elements demonstrated separately but not integrated:

High density microelectrode arrays

Neurons patterned w/ PolyLysine on PLL-g-PEG Hardelauf et al. Analyst 139(13): 3256 (2014)

Zhang et al., Nat Rev Neurosci. 8(8): 577 (2007)

Lab-on-chip vs Lab-on-CMOS

- Integrate multiple laboratory functions onto a "chip"
- Miniaturization, speed, cost, automation

- Reality 2: Most LoCs are labs-on-slides
- Leverage Moore's law for biosensing!
- Significant integration challenges

Redrawn from: Brivio, M., Verboom, W., & Reinhoudt, D. N. (2006). Miniaturized continuous flow reaction vessels: influence on chemical reactions. Lab on a Chip, 6, p. 329.

Huang & Mason, 6th IEEE Int'l Conf on Nano/Micro Engineered & Molecular Systems (2011)

Cell capacitance sensor

Heart cells on capacitance sensors

Dr. Somashekar Prakash, now at Intel

Dr. Timir Datta, now at Feinstein Institute for Medical Research Ms. Emily Naviasky, now a PhD candidate at UC Berkeley

Simultaneous in vitro capacitance + microscopy

Open Access Dataset

Dr. Marc Dandin, now at Carnegie Mellon Dr. Bathiya Senevirathna, now at Intel Mr. Sheung Lu, PhD candidate at UMCP

"Measurements of cancer cell proliferation using a Lab-on-CMOS capacitance sensor with time-lapse imaging", IEEE Dataport, 2019. <u>http://dx.doi.org/10.21227/9zzd-w936.</u>

Mr. Nathan Renegar, UMCP undergraduate Mr. Utku Noyan, PhD candidate at UMCP

Long history of neuronal culture & recording

- 60 years ... culturing neurons and glial cells on chips
- 40-50 years ... microelectrode arrays (MEAs) for recording from neurons

Cerebellar neurons & glia, Hild & Tasaki 1962

Microelectrode array recordings, Thomas et al 1972

Microelectrode array recordings of dissociated neurons, Pine 1980

Nose on a chip

- Dogs are *still* the gold standard ...
 - Expensive, troublesome
- Why not use the same sensors as dogs? (olfactory sensory neurons)

- Proof of concept
- Currently working towards more robust cells

Dr. Timir Datta, now at Feinstein Institute for Medical Research

Consistent, reproducible responses

Dr. Timir Datta

with Elisabeth Smela & Ricardo Araneda (UMCP)

Bioamplifier

Harrison & Charles, IEEE JSSC 38: 958 (2003)

amplifier

open pads

Dr. Jean-Marie Lauenstein, now at NASA Goddard Dr. Nicole MacFarlane, now at Univ. of TN Knoxville Dr. Somashekar Prakash, now at Intel

BAOSMC on electrodes

High density microelectrode arrays

Dragas et al. IEEE J Solid-State Circuits 52(6): 1576 (2017)

Müller et al. Lab Chip 15: 2767 (2015)

Zhang et al. Nat Rev Neurosci. 8(8): 577 (2007)

Genetically encoded calcium & voltage indicators: optical recording

Akerboom, Rivera, Guilbe, Malavé, Hernandez, Tian, Hires, Marvin, Looger, Schreiter ER - <u>http://www.jbc.org/content/284/10/6455/F1.large.jpg</u>, https://commons.wikimedia.org/w/index.php?curid=15140508

Abdelfattah et al., Science 364: 699 (2019)

All-optical electrophysiology

Genetically encoded channels stimulate AND measure responses

Synaptic transmission confirmed via optical stimulation (blue) & recording w/ & w/out synaptic blockers. *Hochbaum et al. Nat Methods.* 11(8): 825 (2014)

Synchronized voltage & calcium recordings. Nguyen et al. Biomed Opt Express. 10(2): 789 (2019)

MEMS surface patterning for co-culture & topology

Only axons and not dendrites get through appropriately sized channels. *Taylor et al. Nat Methods 2(8): 599 (2005)*

450 µm

Tapered channels (15 um 3 um) produce directional axonal projections. *Peyrin et al. Lab Chip. 11(21): 3663 (2011)* Microfluidic devices for logic devices. Feinerman et al. Nature Phys 4: 967 (2008)

Can we *program* a single neuron to respond selectively to one pattern out of many?

with Timothy Horiuchi & Ricardo Araneda (UMCP)

Synaptic plasticity depends on timing

- Depends on relative timing of pre- & post-synaptic spikes
- Interactions with other neurons may become complicated

Bi & Poo, J Neurosci. 18(24):10464 (1998)

Electrical recording

- High bandwidth
- Fast response, real-time
- Low spatial resolution of electrode array pitch

Optical recording

- Low bandwidth
- Slow response
- High spatial resolution from microscope

Electrical stimulation

- Fast response
- Low spatial resolution of electrode array pitch
- BUT: artifacts, crosstalk

Optical stimulation

- Fast response
- High spatial resolution for holographic projection

Spatiotemporal pattern detection

Feedback stimulation after detected activity pattern

What capabilities have been shown?

Simple pattern classification & training

Firing rate after 2 tetanic stimulation patterns Ruaro et al IEEE Trans Biomed Eng. 52(3): 371 (2005)

- Model-free closed loop "black box" training
 - Neural culture activity trained to persist in specific quadrant

- Pattern separation and completion in hippocampal cultures
 - Pairwise interactions btw hippocampal subregions
 - Pattern separation vs completion are enhanced for specific pairs

Error in aircraft pitch control, DeMarse & Dockendorf, IEEE IJCNN, 2005

Poli et al., J Neural Eng. 15(4): 046009 (2018)

A Tale of Persistence

- Wet Computers Based on Trainable Neural Cultures, NSF Semiconductor Synthetic Biology for Information Processing and Storage Technologies, October 2017, declined
- 2. Wetware Computers, BBI Seed Grant Proposal, Feb 2018, declined
- Wetware Computers Based on Patterned Neural Cultures, NSF Integrative Strategies for Understanding Neural and Cognitive Systems, April 2018, declined
- 4. ENS Neural Interface, BBI Seed Grant Proposal, April 2019, declined
- Harnessing Synaptic Plasticity in Living Neuronal Networks, NSF Science of Learning, July 2020, declined

Shift from technology development to science

- 6. Computer in a Petri Dish, Keck Foundation, April 2021, declined
- 7. Learning the Rules of Neuronal Learning, NSF Understanding the Rules of Life, May 2021

Questions?

Thanks for your attention!