
Visualizing the Invisibles:
Micro Signals for Info. Forensics 

and Health Analytics

Include joint research with Wei-Hong Chuang, Hongmei Gou, Adi Hajj-Ahmad, Ravi Garg, Hui Su, 
Ashwin Swaminathan, Avinash Varna, Chau-Wai Wong, Qiang Zhu, C-H. Fu, X. Tian, M. Chen.

Min   Wu

Media and Security Team (MAST) 
ECE Department / UMIACS

University of Maryland, College Park

http://www.ece.umd.edu/~minwu/research.html



1996:  BSE (Automation) & BA (Economics), Tsinghua Univ.
2001:  Ph.D. (EE), Princeton Univ. (advised by Prof. Bede Liu)

Since 2001:  On faculty of Univ. Maryland, College Park
currently ECE/UMIACS Professor and Distinguished Scholar-Teacher

Min Wu: Bio-Sketch minwu@umd.edu

2

 Research: At intersection of image & signal processing, security/forensics, 
learning/statistical pattern recognition, and data science

 Past TC Chair, IEEE Tech. Committee on Info. Forensics and Security.
Past Editor-in-Chief, IEEE Signal Proc. Magazine (top citation impact in EE)

 Patents cited by ~820+ other patents; 180 papers, h=54 (Google scholar)
 Won paper awards from IEEE, ACM & EURASIP; Google Scholar “Test of Time”.

AAAS & IEEE Fellow; IEEE Distinguished Lecturer; 
Young Investigator Awards -- NSF CAREER, ONR YIP; 
Innovator Awards -- MIT TR100/TR35, Computer World “40 under 40”, 

Daily Record Innovator of the Year, UM Invention of the Year



Exploiting Micro-Signals
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 “Micro signal” is small in terms of:
– Amplitude than dominating signals 

(by 1+ order of magnitude) 

– Topological scale
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Embedding Micro-Signals as Tracers

2-User Interleaving Attack

 Embedded FP (aka forensic watermark) is widely adopted 
to protect Hollywood media today

 Survive collusions and analog/physical channel:
e.g. from hard copies

Fingerprinted Map



Exploiting Micro-Signals
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 “Micro signal” is small in terms of:
– Amplitude than dominating signals 

(by 1+ order of magnitude) 

– Topological scale

Intrinsic from Device
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 “Micro signal” is small in terms of:
– Amplitude than dominating signals 

(by 1+ order of magnitude) 

– Topological scale
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Micro Sig. E.g.: Forensic Ques. On “Time + Place”

 When was the video actually shot? And where?
 Was the sound track captured at the same time as the 

picture?  Or super-imposed afterward?

 Explore fingerprint influenced by power grid onto sensor 
recordings
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Ubiquitous Forensic Fingerprints from Power Grid

 Electric Network Frequency (ENF):  50 or 60 Hz nominal
 Change slightly due to demand‐supply
 Main trends consistent in same grid

9Source:  US Grid image is from InTech online
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Ubiquitous Forensic Fingerprints from Power Grid
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 Electric Network Frequency (ENF):  50 or 60 Hz nominal
 Change slightly due to demand‐supply
 Main trends consistent in same grid

 ENF can bee “seen” or “heard” in sensor recordings
 Power grid influences electronic sensing (E/M interference, vibration etc)

 Help determine recording time/location, detect tampering, etc.

ENF matching result demonstrating similar variations in the ENF signal 
extracted from video and from power signal recorded in India

Video ENF signal Power ENF signal Normalized correlation
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Tampering Detection
 Adding a clip into original video leads to discontinuity in ENF

– Clip insertion can also be detected by comparing the video ENF signal 
with the power ENF at corresponding time
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 Anti-forensics analysis and countermeasures  [CCS/TIFS]
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Infer Location from ENF
 Estimate grid location of a recording:  

‒ Support IoT location security and law enforcement A/V forensics 
‒ SP Cup 2016 as education and global outreach

LEBANON INDIA Eastern US
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ENF Feature Examples for Grid Locations
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1. Mean of 
ENF segment; 

2. log(range); 

3. log(variance) 
of approx. after 
wavelet 
analysis

4-7. log(var.) of 
4 high-freq
subband sig.; 

8-9. AR(2) 
modeling 
parameters; 

10. log(var) of 
innovation sig.
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Adopted by IEEE SP Cup’16 Undergrad Competition

 334 students registered in 52 teams ~ every continent covered
– Final submissions by 33 teams from 23 countries

 2 components:  hardware and sensing;  signal pattern classification
=> Read more in SPM 9/2016 issue; Check IEEE DataPort & SigPort for dataset

IEEE SP CUP 
2016

Min Wu (UMD) - ICIP 2018: Visualizing Micro-Signals 17



Exploiting Micro-Signals
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 “Micro signal” is small in terms of:
– Amplitude than dominating signals 

(by 1+ order of magnitude) 

– Topological scale
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Micro-Signal for Health: Heart Rate Monitoring

 Heart rate monitoring in home and fitness
– Contact based: electrodes, chest belts, and finger clips.
– Contact-free: more user-friendly, but challenging to design.

 Observation:  face color changes 
in the same pace as heartbeat
– Although naked eyes cannot see it
– Prior work: 

“rest case” with little or small motions. 

 Challenging cases: videos with significant motions
– Fitness/athletic training (running on treadmill, …); driving; 
– Contact-free monitoring for children in special needs; surveillance

Min Wu (UMD) - Micro-Signal Analytics 20Video Source: M. Rubinstein, N. Wadhwa, F. Durand, W. T. Freeman, "Revealing invisible changes in the world," Science, vol.339(6119), Feb. 2013.



Micro-Signal Examples: Heart Rate in Motion

Min Wu (UMD) - Micro-Signal Analytics 21See video at <https://youtu.be/9njZ1fBq26g> 



Robust Tracking of Weak Noisy Traces

27Min Wu (UMD) - ICIP 2018: Visualizing Micro-Signals

Spectrogram of a rPPG signal

Spectrogram of an audio ENF signalPreproc. Visualization from Radio Analytics *

* Radio Analytics data: courtesy of Dr. Ray Liu and Feng Zhang @ Origin Wireless Inc.

 Challenges:  very noisy + weak traces
– Freq. tracking in many applications
– Very low SNR;  strong interference 

from other sources
– Varying distortion types
– Multiple freq. of interest
– Need a good general/universal method



Promising or Skeptical:  Cardio from Wearables? 

 Wearables for heart rate monitoring in home & fitness
– Chest belt (related to 1-lead ECG) ~ gold standard in sports
– Most wearables measure PPG:  Finger clips (oximeter); 

Watches/bracelet (Apple Watch, Samsung Galaxy, FitBit, etc.)

 ECG  vs.  PPG  (photo-plethysmogram)

Min Wu (UMD) - PPG vs. ECG 28
Image source: https://www.indiamart.com/proddetail/ecg-machine-leads-11806445962.html, 
http://helowearables.world/helo-wristband-products-science-behind-helo/

ECG PPG
What does it 
measure?

Electrical potential signal
of cardio activities 

Optical measurement of the cardio-
induced blood volume changes

Accuracy & 
knowledge
base

Clinical gold standard; 
Rich knowledge base

Indirect to cardio function; Limited cardio 
knowledge from PPG directly;  Prone to 
motion artifacts due to loose contact etc.

Comfort Restrictive on user activities and 
uncomfortable

More user friendly; possible to 
be contact-free by video etc.

Cont’s long-
term use

Specialized equipment (Holter etc.); 
skin irritation with adhesive wear

Long-term wear possible 
w/o constant user intervention



Typical Pattern:  Waveforms & Spectrograms

Spectrograms based on data from CapnoBase, Subject #3, age 2, 500th cycle
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ECG PQRST Image:   https://en.wikipedia.org/wiki/Electrocardiography
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Can we obtain ECG from PPG?
 Benefits if this could be done: 

– Enable user-friendly, low-cost, long-term & 
continuous cardio monitoring
 Facilitate studies on patients w/ special needs (autism, etc.)

– Leverage rich ECG knowledge and “transfer” it to build knowledge 
base for PPG and data from wearables

 Two major research issues
1. Can we infer ECG from a clean PPG?  most fundamental 

– Patient independent (inference for a group of patients, e.g. by age, 
gender etc.) vs. Patient specific (refine with specific patient info.)

– Role of disease types on the inference model?

2. Can we clean up PPG due to movement etc.?
– Leverage multiple sensors (e.g. accelerometers)

Min Wu (UMD) - PPG vs. ECG 30

Support & promote 
public health and more

not just blackbox data-driven AI 
but medically explainable



Clean up PPG in Prep for Sig. Analytics (UMD E4 Dataset)

 Combined proc. from noisy 
PPG + accelerometer signals

 Improved heart rate (HR) 
accuracy than Empatica E4 
under motion
– Compared to gold standard 

for HR in fitness (Polar cheststrap)

e.g.1  Running  (female subject)

32



Can we obtain ECG from PPG?
 Benefits if this could be done: 

– Enable user-friendly, low-cost, long-term & 
continuous cardio monitoring
 Facilitate studies on patients w/ special needs (autism, etc.)

– Leverage rich ECG knowledge and “transfer” it to build knowledge 
base for PPG and data from wearables

 Two major research issues
1. Can we infer ECG from a clean PPG?  most fundamental 

– Patient independent (inference for a group of patients, e.g. by age, 
gender etc.) vs. Patient specific (refine with specific patient info.)

– Role of disease types on the inference model?

2. Can we clean up PPG due to movement etc.?
– Leverage multiple sensors (e.g. accelerometers)
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Support & promote 
public health and more

not just blackbox data-driven AI 
but medically explainable



PPG to ECG:  Methodology At-a-Glance

A.  Reconstruct lower-freq. spectrum via inverse filtering type of operation
B.  Reconstruct extended spectrum by exploiting correlation/sig. properties

 Can combine the two steps with model+data supported learning

Min Wu (UMD) - PPG vs. ECG 34
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Subject Dependent (SD) vs. Independent (SI) Model
• SD:  training and testing on different data from the same subject
• SI:  one model trained with all training data from multiple subjects

PPG-to-ECG example 
(on CapnoBase)
• 4 years old, weight 18 kg

Pearson’s correlation coeff. of 
inferred ECG from PPG:

0.991 in SD mode 
0.883 in SI mode

SI SD

35

SI is more challenging to 
be accurate; may explore 
by age, gender, etc.



Min Wu (UMD) - PPG vs. ECG 

Prelim Results:  Cardio Disease Classification
 Confusion matrices & classification accuracy of SVM (w/ polynomial 

kernel) on 3 types of data:  original ECG vs. inferred ECG vs. original PPG

36

Original ECG
(reference)

ECG inferred from PPG
(proposed idea)

Original PPG
(direct learning from wearables)

Classification 
Accuracy:                99.6%                            99.3% 76.6%    

Our proposed inference shows promising benefit to learn by 
physical model & biomedical knowledge + data than PPG data alone



Recap: Exploiting Micro-Signals

Min Wu (UMD) - ICIP 2018: Visualizing Micro-Signals37

 Harnessing “Micro Signals” in media data:
from forensics to health analytics 

 Visual approach inspires an improved use
of micro signals beyond the media domain
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