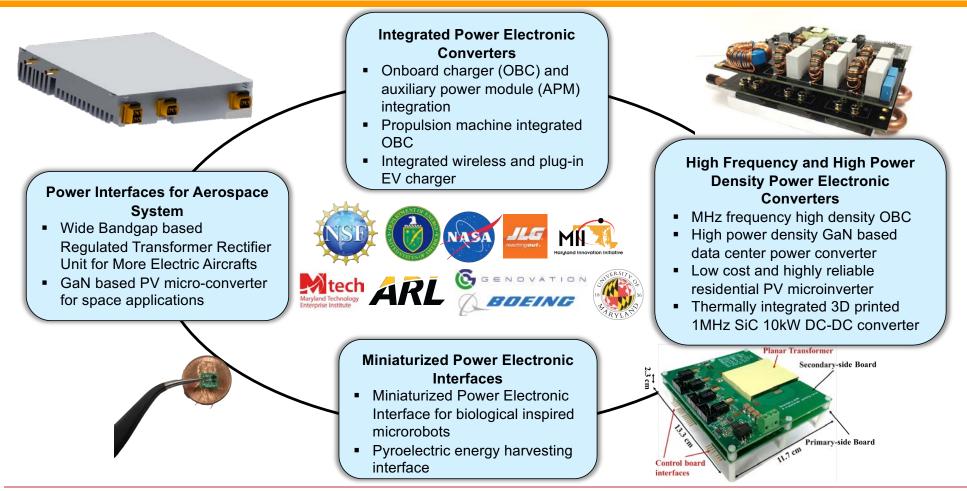
Energy Conversion Innovation (ECI)


1

Alireza Khaligh, Ph.D. Professor and Director Maryland Power Electronics Laboratory (MEL) University of Maryland College Park, MD 20742

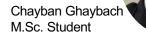
Research at Maryland Power Electronics Laboratory (MPEL)

- Sustainable Energy Conversion Solutions
- Ultra light, Highly Efficient, Low Profile
 - Wide Bandgap Semiconductors
 - Planar Magnetics
 - Electro-Thermal Co-design
 - Additive Manufacturing
- Applications
 - Transportation Electrification
 - Electric Cars, More Electric Aircrafts, Shipboard Power Systems
 - Renewable Energy Systems
 - PV Microinverters
 - Data Centers, Biomedical, IoT

Research at Maryland Power Electronics Laboratory (MPEL)

Energy Conversion Innovation (ECI)

MPEL Team


Ph.D. Student

Shiladri Chakraborty Post-Doc Fellow

Casey Beyers M.Sc. Student

Jianfei Chen Post-Doc Fellow MARYLAND POWE ELECTRONICS LABORATORY (MPEL)

Yidi Shen Ph.D. Student

(E)) - (D)

Daniel J Zakzewski Ph.D. Student

Prof. Alireza Khaligh Director, MPEL

Chanaka Singhabahu Ph.D. Student

Apury Yadav Post-Doc Fellow

Samantha Falco

M.Sc. Student

Yongwan Park Ph.D. Student

Byungchul Kim Ph.D. Student

Arafat Hasnain Ph.D. Student

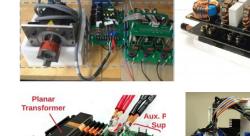
University of Maryland at College Park

- Established Reputable Power Electronics Research Program
- Technical Journal and Conference Papers
 +200
- Google Scholar Citations
 +12,350
- H-index

48

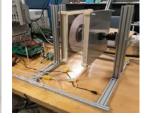
Research Funding (PI/Co-PI)
 +\$10 M

MARYLAND POWER ELECTRONICS LABORATORY (MPEL)

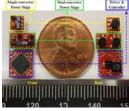


University of Maryland at College Park

- Patents / Invention Disclosures
 19 / 21
- Ph.D. / M.Sc. / B.Sc. Supervised
 14 / 12 / 53
- Current Ph.D. / Post-Doc Members
 9 / 3
- Awards and Recognitions
 +30
- Student Awards and Recognitions


+60

MARYLAND POWER ELECTRONICS LABORATORY (MPEL)



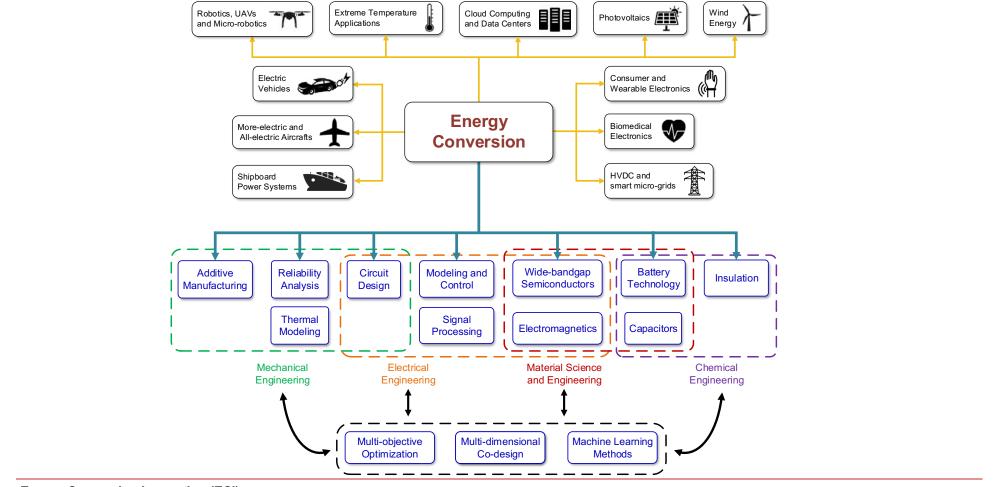
University of Maryland at College Park

New Courses

ENEE 612: Advanced Power Electronics ENEE 476: Renewable Energy ENEE 408K: Capstone Design Project – Electric Cars ENEE 498K: Advanced Design Laboratory on Electric Cars ENEE 101: Introduction to Electrical & Computer Engineering (One lecture and two laboratory sections)

- NSF REU Site in Transportation Electrification
- NSF IRES Site in Electrified and Autonomous
 Transportation Systems
- Founding Faculty Advisor, University of Maryland's Terps Racing EV Team

MARYLAND POWER ELECTRONICS LABORATORY (MPEL)



Alireza Khaligh

Energy Conversion Innovation

- President Biden's Energy Policy Vision
 - Zero carbon pollution from the U.S. electricity sector by 2035
 - Net-zero economy-wide emissions by 2050
 - \$2 trillion investment on renewable energy innovation
- A critical scientific and technological challenges in the U.S. push to expand green energy and infrastructure to combat the threat of climate change

Energy Conversion Innovation

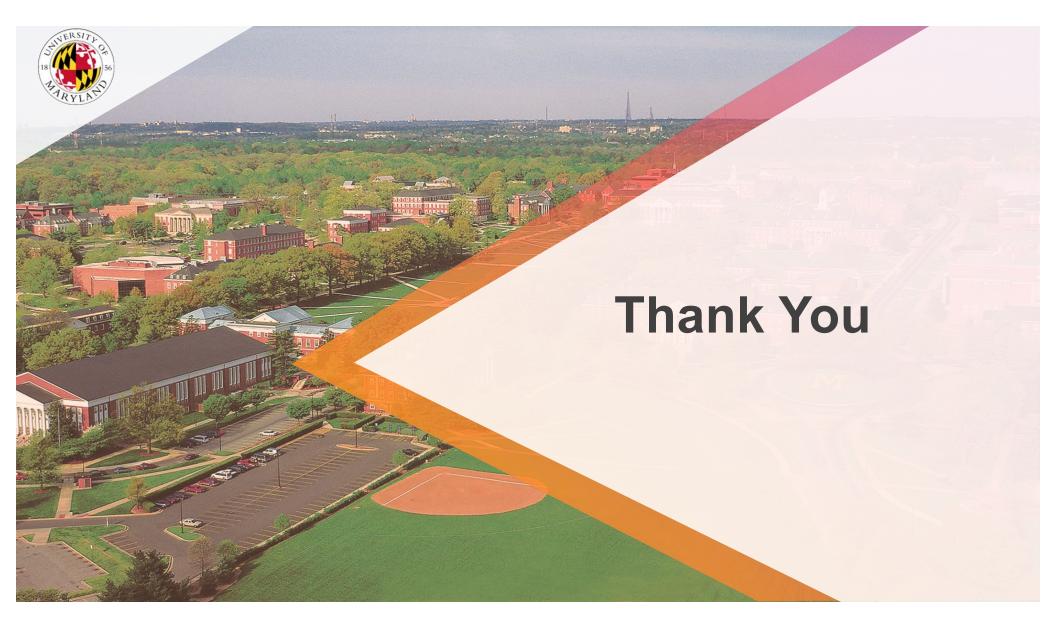
Energy Conversion Innovation (ECI)

Energy Conversion Innovation

- ECE at UMD is uniquely positioned to develop leading technologies through an Energy Conversion Innovation (ECI) Center.
- Combine aspects of science and engineering to foster partnership between UMD and engineering entities, from government to private sectors.

Relevant Topics

• High-Frequency and High Performance Power Electronic Systems


- By 2030, 80% of the electricity will be processed by Power Electronics.
- Electrified transportation systems, renewable energy systems, cloud computing and data centers, wearable biomedical and consumer electronics, and distributed generation

• Optimization and Control of Distributed Energy Conversion Systems

- Large-scale multi-frequency power electronics-enabled power systems
- Smart microgrids, more electric aircrafts, next generation shipboard systems, drones, and data centers among many others.
- Thousands of building blocks with operating frequencies from a few Hz to a few MHz with complicated system functions.

Ultra-Wide Bandgap Semiconductors

- Ultrawide-bandgap (UWBG) semiconductors like AIGaN/AIN, Ga2O3, and diamond are emerging as next generation of semiconductors for super high-temperature energy conversion applications.
- Energy Logistics
- Energy Security

