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Cyber-Physical Systems
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What can go wrong!

DARPA's High-Assurance Cyber Military Systems (HACMS)

(Interview with 60 minutes)
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What can go wrong!

Although some characteristics are similar, ICS also have characteristics that differ from traditional
information processing systems. Many of these differences stem from the fact that logic executing in ICS
has a direct affect on the physical world. Some of these characteristics include significant risk to the
health and safety of human lives and serious damage to the environment, as well as serious financial
1ssues such as production losses, negative impact to a nation’s economy, and compromise of proprietary
information. ICS have unique performance and reliability requirements and often use operating systems
and applications that may be considered unconventional to typical IT personnel. Furthermore, the goals
of safety and efficiency sometimes conflict with security in the design and operation of control systems.

Cyber security = steal credit st oo o
. . as Programmable Logic Controllers (PLC)
card, leak personal information,

Recommendations of the National Institute

of Standards and Technology
CPS security = loss of control
in nuclear reactors, affecting o er
transportation networks, ... Karen Scarfone
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Noninvasive Sensor Spoofing Attacks
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Noninvasive Sensor Spoofing Attacks
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Y. Shoukry, P. D. Martin, P. Tabuada, and M. B. Srivastava, “Noninvasive Spoofing Attacks for Anti-Lock Braking Systems,”
CHES 2013



Noninvasive Sensor S
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Wheel speed (rpm)
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---Original wheel speed
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Y. Shoukry, P. D. Martin, P. Tabuada, and M. B. Srivastava, “Noninvasive Spoofing Attacks for Anti-Lock Braking Systems,’

CHES 2013
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Noninvasive Sensor Spoofing Attacks

Y. Shoukry, P. D. Martin, P. Tabuada, and M. B. Srivastava, “Noninvasive Spoofing Attacks for Anti-Lock Braking Systems,”
CHES 2013
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False Data Injection Attacks
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Y. Shoukry, et. al,“Noninvasive D. Kune, et. al,“Ghost Talk: Mitigating Y. Son, et. al,“Rocking Drones with
Spoofing Attacks for Anti-Lock EMI Signal Injection Attacks against Intentional Sound Noise on Gyroscopic
Braking Systems,” CHES 2013. Analog Sensors,” |EEE S&P 201 3. Sensors,” USENIX Security 2015.

Traditional information-security offers
no defense against these attacks!



Secure State Estimation
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Secure State Estimation
Threat Model:

* The attacker has compromised “s”” (out of ““p’’) sensors.

* Sensor attacks: any attack mechanism, e.g., sensor spoofing,

communication channel,
software virus, .... T

N __ V%
X

* The attacker Is free to corrupt
all/some/none of the A
compromised Sensors. e

* [ he attack can be arbitrary

(no boundedness assumption, Secure p| Feedback Control

no stochastic model, ...). State Estimator Algorithm



Secure State Estimation

p = total number of sensors
s = number of attacked sensors

- Redundancy

* Homogeneous sensing majority voting (p > 2 s)

* Heterogeneous sensing !

* Dynamics ?

Secure ' Feedback Control

State Estimator Algorithm




Secure State Estimation

Key 1dea:
explort physics and
ynamics to Increase

redundancy

Vehicle Sensors
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Front object CCD — - - Side curtain sensor
camera Blind spot
Front airbag —— \ detection
sensors

ASCD

Nightime pedestri

warning
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Secure State Estimation

Key idea;

explort

DNYSICS and

dynamics to increase

red

Scalability?
Real-time!?

NP-hard?

undancy
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Secure State Estimation

Observability:
The ability to construct the state from the outputs Y = Ox

Definition (s-sparse observable):

A dynamical system Is said to be s-sparse observable if It is observable from any
D - S SEeNsors.

Theorem:

The secure state estimation admits a
| , t+1) _ t t

unique solution if and only if the ) = Az + By

dynamical system Is 2s-sparse

observable system.

S—sparse
Recall: homogeneous sensing (p > 2s)

extended for nonlinear systems, * ?
bounded noise, Gaussian noise

Secure ' Feedback Control

Y. Shoukry and P. Tabuada, “Event-Triggered State State Estimator Algorithm

Observers for Sparse Sensor Noise/Attacks,” TAC 2016 oy



Secure State Estimation
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Secure State Estimation

Threat Model:

* The attacker has compromised “s” (out of “p’’) sensors.

* The attacker has compromised “r” (out of “m’’) actuators.

Definition ((r,s)-sparse strongly
observable):

A dynamical system is said to be (1; s)-
sparse strongly observable If it Is strongly
observable from any r actuators and p - s
Sensors.

Theorem:

The secure state estimation admits a
unigue solution if and only if the
dynamical system is (2r,2s)-sparse
strongly observable system.

2D — 450 4 B(u(t)+ e )

——"

r—sparse

y O = Ca® 4 o, ®

——"

Ss—Ssparse

L

?

Secure
State Estimator

_» Feedback Control

Algorithm

M. Showkatbakhsh, Y. Shoukry, R. H. Chen, S. Diggavi, and P. Tabuada, “An SMT-based Approach to Secure State

Estimation Under Sensor and Actuator Attacks,” CDC 2017.
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Algorithms for Secure State Estimation

* Step |: For each gate, define a binary indicator
variable (0 = gate Is good, | = gate Is bad)

* Step 2: Build a model.

—bq = A< B
—bo = B

X =4 b = (A< B)V-B
bg = (B@C)\/—lc
\Zibigl

» Collect inputs and outputs ... append them to
model.

» Satisfiability problem ... use SAT solver.

» Scales to millions of gates!

26



Algorithms for Secure State Estimation

» Step |: For each sensor; define a binary indicator variable
(O = sensor I1s good, | = sensor Is attacked)

* Step 2: Build a model.

Y, =0,z + Y, attack free
—~—

model
mismatch

- Satisfiability problem ...
can not use SAT solvers

:E(t‘H) — A:C(t) 1 Bu(t) i n(t)

yz(t) _ C’Zx(t) T (b

sensor
noise

process
noise

v

Secure
State Estimator

A

o

Feedback Control
Algorithm

(b, )

[ >'@

A (= -0l < i) A (S <s)
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Satistiability Moc

« SAT Solvers: one of the

ulo Convex Programming

centric tools In computer science to

reason about cyber-systems.

e Convex Optimization: one of the centric tools in electrical
engineering to reason about physical systems.

» Cyber-Physical Systems!

rBoolean
Constraints

SAT
Solvers

Solvers

SAT + Convex
SMT

Mixed Integer
Programming

Convex

Optimization ~onvex

ConstraintsJ

28




Scalability Results

Increase the number of

Boolean constraints
#Boolean variables = 4800

#Real variables = [00

Quality
Coverage

Instructions

http://yshoukry.bitbucket.io/SatEX

Increase the number of
Real variables

#Boolean variables = 4800
#Boolean constraints = /000

Execution time (s)

—e— SATEX (SSF) |
—=— CPLEX (1 core) | |
—eo— CPLEX (4 cores) e

— e e

Execution time (s)

—eo— SATEX (SSF)
—a— CPLEX (1 core) | |
—o— CPLEX (4 cores) .

—— 73

dReal times out (3 hours)

| | | | | | | |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of real variables
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Approach

Brute force search
[F. Pasqualetti et al. TAC 201 3]
[M.S. Chong et al. ACC 201 5]
[S. Mishra et al. ISIT 2015]

Mixed-integer programming
[M. Pajic et al. ICCPS 2014]

SMT solvers (Z3/dReal)
[M. Rahman et al. [CCPS 2014]

Our approach
[Y. Shoukry et al. ICCPS

2016, TAC 2017]
Best paper award

Scalability Results

(500 sensors with 100

Scalability?
(State estimation

being under attack) error)

Time out (> 7 hours) Optimal

1.5 hours sub-optimal

Time out (> 3 hours) n

< |5 seconds
(no heuristics, no
relaxation)

Optimal (in the worst
case), sub-optimal (in
general)

SV



Experimental Results
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Experimental Results
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Secure Iraffic Routing

Loop Sensors §

Secure
Traffic Estimation

Routing
Algorithm

34
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Secure [raffic Routing
Threat Model: |

* False Data Injection: a car that
physically exists on the road is
reporting maliciously corrupted
information (wrong position, speed,
and/or speed of nearby vehicles).

* Sybil attacks: a car which physically exists on the road
reports the presence of nearby cars that do not physically exist
(ghost cars). Ghost (Sybil) cars may also report the presence
of more nearby ghost cars.

40



Root-of- Trust
* Sensor redundancy IS .t Wl
compromised! : gy > { {4

* VWe need another |
root-of-trust. Loop Sensors [

* Legacy sensors (e.g., loop sensors and cameras) provide noisy
and sporadic measurements.

Key 1dea:
- Can we use legacy sensors (placed ot bhvs -
thousands of miles away from the CXPIOIL PhysIcs dn

attack position) to detect attacks? dynamics to propagate
the trust.

41



Case Study: Bologna City

* Bologna Ringway dataset

* lypical day’s traffic between
8:00 am and 9:00 am
(rush hour)

* More than 22000 vehicles

* To simulate the dynamics because of injected attacks, we use
Simulation of Urban MObility (SUMO) simulator.

Y. Shoukry, S. Mishra, Z. Luo, and S. Diggavi, “Sybil Attack Resilient Traffic Networks: 4
A Physics-Based Trust Propagation Approach,” ICCPS 2018



Numerical Results
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Y. Shoukry, S. Mishra, Z. Luo, and S. Diggavi, “Sybil Attack Resilient Traffic Networks:

A Physics-Based Trust Propagation Approach,” ICCPS 2018
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Privacy-Aware Sensor Fusion

» Sensor data collected from various sources are aggregated at a
centralized node.

* [wo leak scenarios:
- Malicious aggregators

* Information leaks from trusted
aggregators

* [False data Injection attacks:
some of these sensors are malicious

45



Problem Setup

S
' Sl . (a:l,yl),dl

So (332,y2)>d2

TN
’\ S3 @ (23,y3),d3 @ggregator A}@uery@
—

® target location

» Sensors (or anchors) provide their own location and an
estimated range to the target of interest.

* Objective: calculate the target location (X1, yT) while ensuring
the privacy of all observer locations (xi, yi) as well as the
distance to the target, x.

» Semi-honest adversary (honest but curious)

46



T hreat Moqgel
' S1 ¢ (r1,y1),dy

So (332,y2)>d2

TN
’\ S3 @ (23,y3),d3 @ggregator A}@uery@
—

® target location
* Privacy against sensor coalitions:

[t any sensor colludes with up to (m-1) other sensors, the coalition should
learns nothing about the non-colluding agents’ private information (other than
the information contained in the immutable privacy leak).

 Privacy against aggregator coalitions:
f the aggregator sensor colludes with up to (m-1) other sensors, the coalition
should learns nothing about the non-colluding agents’ private information
(other than the information contained in the immutable privacy leak).

* Resilience against data injection attacks -



ENcry
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bted [rilateration Algorithm

@ggregator A)—»@uery @

&)

& = posmou estimate
¢ ) = range circle
\/ objective function

m Stepi1-Encrypt: each observer performs the following steps:

m Encrypts its distance measurement using the public key of the
query node pkK,.
m Encrypts the message once more using the public key of the
aggregator pk,.
m Step2-Aggregate: The aggregator decrypts all the messages msg; using his
private key skx and constructs the following matrices using the extracted data:

m Step3-Decrypt:

The aggregator A sends the final estimate [2" ]]SEE to the query

node Q. The query node decrypts the message using its private key skq to
retrieve the final estimate 2.".



ENcry
N

bted [rilateration Algorithm

@ggregator A)—»@uery (@

&)
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¢ 3 = range circle
\/ objective function

m Stepi1-Encrypt: each observer performs the following steps:
m Encrypts its distance measurement using the public key of the
query node pkK,.
m Encrypts the message once more using the public key of the

Execution time = 11.7 hours!

m Step3-Decrypt:

The aggregator A sends the final estimate [2 ]]EL*E to the query

node Q. The query node decrypts the message using its private key skq to
retrieve the final estimate 2.".



How lo Reason About Privacy

S
Sp (33173/1)7011

So ($2ay2)ad2

Sz @ (73,y3),d3 : @ggregator A)H@uery @
® target location : //

Theorem:

Assume that all entities are honest-but-curious and under standard cryptographic
assumptions (namely the Decisional Composite Residuosity (DCRA)
assumption), the proposed localization protocol ensures:

(1) Sensor obliviousness (any m-| sensors can not reveal the information of
the remaining sensor)

(i) Aggregator obliviousness (aggregator + any m-| sensors can not reveal
the information of the remaining sensor)
m — 3

(1) Resilience against any m — [—5—] sensor attacks

A. Alnwar, Y. Shoukry, S. Chakraborty, P. Martin, M. Srivastava, and P. Tabauda, “ProLoc: Resilient
Localization with Private Observers Using Partial Homomorphic Encryption,” IPSN 2017 (best demo award) o0



Experimental Results

* Experiments with a mobile query
node and sensor nodes
mounted on the celling

» Cloud and target nodes implemented = =
on a MacBook Pro. S
s L) target
» Custom ranging hardware for time : ;ﬁ%
of flight connected to a Nexus 5 __ <

Communication cost
Mean error (m) Standard deviation Computation time (ms) # messages, # Kbytes

Least squares 0.2341 0.18738 0.74 7,1.2
Proposed algorithm 0.2381 0.18634 103 7,8.5

A. Alnwar, Y. Shoukry, S. Chakraborty, P. Martin, M. Srivastava, and P. Tabauda, “ProLoc: Resilient

Localization with Private Observers Using Partial Homomorphic Encryption,” IPSN 2017 (best demo award) |



Summary

[ ) ~
False Data Injection Sybil Attacks Privacy-preserving
Attacks + Sensor Fusion
+

TAC 2016, CDC 2017, ICCPS 2016

(Best paper award)
- .

L Y /ﬁl

_ r\
2 4,000 S
[=]
S ~

g 3,000 |- = §
Q \
'S 2,000 [T = !
; ‘ R IS
% 1,000 |- _,I ' ., §
§ — - - ) 8 ‘ L ;
< 38 ——, Yove 339

% & '*'.n.,{‘ & %5 o5
&

Z 4,000 — B
[=]
S
S 3,000
=
a

False Data Injection

2,000

1,000 -

Departure time (a.m.)

ICCPS 2018

False Data Injection

i

~
Py
5y

(b) ‘:"t hA (C)

CDC 2016, IPSN 2017
(Best demo award)

52



T hreat Models
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Software Vulnerabilities

* S0 far we assumed that our software Is performing the right
algorithms.

» What happens when hackers exploit vulnerabilities inside the

drone software!

* Example:
Software update while flying!

Traditional software security
mechanisms do not treat this
as security vulnerability!
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