

Reaching 10 Years of Battery Life for Intelligent Industrial Internet

I3Mote Platform

I3: Intelligent Industrial Internet

Mote: small bit of substance, such as a fleck or particle (sensor)

SenseAnywhere:

- Programming Environment
 - Connected MCU: 128KB flash, 20KB SRAM, 48MHz CM3 w/ multiprotocol radio
 - Fusion MCU: 2MB flash, 256KB SRAM, 48MHz CM4 w/ high precision AFE
- MIMO Power Manaegment with complementary Energy Harvesting
- Multi-point, Multi-Modality Sensing: Temp, Humidity, Pressure, Ambient, Accelarometer
- Unique differentiated Ips
- 10 years battery life

🦊 Texas Instruments

Pilots

<section-header>

800 pumps/floor, 172x49 m², 10 sensors/pump, 1-10s update, 1TB/y

Motor predictive maintenance

Vrms as indication of vibration, 2kS/s, 100us sync, no wired power supply, no EH due to discharge

>50 sensos/car, GW install env., sensor types: temp, humidity, strain, current/voltage, 10-100KBps, RTD=1s, 99.999%

🔱 Texas Instruments

Path to reach 10 years battery life

TI Confidential – NDA Restrictions

Path to 10-years Battery Life

Step 1: Lowest Power and Robust Protocol (robust = low power)

- Frequency Diversity: Channel Hopping
- Time Diversity: Time-slotted contention free scheduling
- Power Diversity: Tx Power
- Space Diversity: Freq re-use, mesh

Step 2: Minimize radio wake-up overhead for duty cycled application (including wakeup radio use case)

Step 3: Improve power management efficiency

Step 4: Optimize sensor data usage (embedded analytics) and reduce radio duty cycle: $10s \rightarrow 10m$

Step 5: Optimize network topology through smart Gateway

Step 6: Leverage ambient energy harvesting (if applicable)

Sub-systems	Active (µA)	Sleep (µA)	Total (µA)
Connectivity	TX: 17.68	2.49	75.96
	RX: 55.25		
	CPU: 0.54		
5 Sensors	9.83	9.41	19.24
MCU Processing	0 (no	0.04	0.04
	MIPS)		
PM	1.63	0	1.63
System Total	84.93	11.94	96.87

Step 1: Lowest Power and Robust Protocol

TI Confidential – NDA Restrictions

IoT Connectivity Landscape

- IoT wireless connectivity the last mile
- Requirements:
 - Robust, low power, secure, easy to use

Time Slotted Channel Hopping

- IEEE 802.15.4e TSCH MAC
- Assigned slot: a channel offset and time
- Slotframes repeat continuously
- Each slot has a unique, globally known slot number

Robustness Test – Quantification in 2.4 GHz

- Interference: Two Wi-Fi nodes in channel 1-4
 - 1470B UDP Traffic generated by jperf
 - Variable rates
- 15.4 traffic: 70B/8sec
 - ZigBee operates in channel 11
 - Uses channel hopping from chan 11 to chan 26

Step 2: Reduce Radio Wake-up Overhead

TI Confidential – NDA Restrictions

Ultra low power & Fast Wake up – BAW MEMS Clock

100000

ISSCC 2011

0.37KHz, 130nm

- Duty Cycled App
 - wakeup time reduced from 500uS to 5uS
 - Duty cycle 1second (I3Mote with 6TiSCH)
 - Fig 1
- Duty Cycled Sensors saving:
 - HDC1080 humitity+temp sensor on I3Mote
 - wake up time reduced from 2.5ms to 0.1ms
 - Power saving: 15% 39% (Fig 2)

TI TPL5000 at 1Hz at1.8V

🖊 Texas Instruments

Ultra Low Power and Fast Wake-up - BAW

- For radio TX and RX the system operation consists of Wakeup", "Radio Operation", "Power Down", and "Sleep"
- Wake-up time consumes significant time/current
- It is important to reduce the wake-up time to reduce the power consumption
- How can we optimize \rightarrow BAW (Bulk Acoustic Wave)
- **BAW Definition**: a crystal-free high-frequency (~2-3GHz), piezoelectric MEMS resonator technology targeting for high performance timing and frequency filtering applications.
- **Timing Applications:** Crystal replacements, oscillators, jitter cleaners, clock integration

Step 3: Improve power management efficiency

TI Confidential – NDA Restrictions

Multiple Input, Multiple Output Power Management

Improve Power Management Efficiency

Requirements for New Power Module

Features	Target	Now
Power efficiency	> 90%	~75 %
Integration	High (single chip)	Low (4 chips)
Ultra low-power metering	Yes	No
Iq (Quiescent Current)	< 100 nA	1.5 uA
Reverse voltage protection	Internal	External diode (reduces the efficiency)
Number of required external inductors	1	3
Automatic power source detection	Yes (with the specific power ordering)	Yes

TI Confidential – NDA Restrictions

🔱 Texas Instruments

Step 4: Optimize Sensor Data Usage (Embedded Analytics) and Reduce Radio Duty Cycle

TI Confidential – NDA Restrictions

Motivation of Data Analytics: Remote Monitoring

- A factory has 1000 pumps + equipment for monitoring on the factory floor
- More than 10 different kinds of sensor data monitored needs to be read every 1-10s
- In one year, total over-the-air data size is about ~1 TB, which consumes ~1.2 MJ system energy
- ~1% of 1 TB carries "useful" info
 - Energy consumption number can be reduced
 - Supported number of nodes can be increased by upto ~100x
- Send necessary information from the send nodes to the central controller

Data Duty Cycle Reduction Concept

Data Duty Cycle Reduction Concept

TI Confidential – NDA Restrictions

Data Compression

- Slowly varying data example:
 - Temp, humidity, pressure ... data duty cycle of read/10s can be reduced to ~20 mins with compression recovery accuracy of 99.5-99.9%
- Data recipient (GW) needs to obtain data variation pattern over time of 1% of the original duty cycle

Data Compression Performance

Sensor Data	Compression ratio (%)	Accuracy (%)
Humidity	99.9	99.5
Temperature (Ambient)	99.9	99.9
Vibration (1 Hz signal)	99.9	99.7
Vibration (1 kHz signal)	99	99.8
Pressure	99.9	99.95
Temperature (Oven, low frequency sine wave)	99.67	99.96
Temperature (Oven, high frequency sine wave)	99.3	99.97
Temperature (Oven, square wave)	99.25	99.9

Incorrectly reconstructed data due to unknown decompression parameter at the receiver

Power saving through "Smart Sensing"

Step 5: Optimize Network Topology through Smart Gateway

TI Confidential – NDA Restrictions

Step 6: Energy Harvesting

TI Confidential – NDA Restrictions

Application on I3Mote

- Rechargeable battery used as the secondary battery
 - Whenever the energy from the secondary battery is available, use the energy from it. Otherwise, use the energy from the primary battery
- Solar panel used to charge the secondary battery

27 V Texas Instruments

TI Confidential – NDA Restrictions

Experiment Results (Under "Normal" Office Light Strength)

- Office light on during the day (~250 lux) and off during the night
- Average ambient light strength: 120 lux
- Average efficiency: 38.8 %
- Battery life increase: 160%

Experiment Results (Location Close to Window)

- Node close to window
- Average ambient light strength: 319 lux
- Average efficiency: 100 % → <u>No battery required</u>

Network Topology

Summary

- 1. Power performance is one of the key challenges for WSN "motes"
- 2. A methodology proposed to reach 10 years battery life

	AA Battery Life (years)
ZigBee (Fully Functionally Device Mode)	4.4 years
TSCH	5.70 years
TSCH + fast wakeup	6.06 years
TSCH+ fask wakeup + improved PM with higher efficiency and low Iq	7.2 years
TSCH + fast wakeup + improved PM + smart sensing with higher efficiency and low Iq	13.12 years

- 3. It is a system wide optimization which contains
 - Ultra-Low-Power and Robust protocol
 - Fast wake-up clock and low leakage
 - Power management circuits efficiency
 - Smart sensing to reduce duty cycle of radio
 - Energy harvesting as complimentary power supply

