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Motivation: Objectives of Learning from Data

High-Dim Data with Mixed Low-Dim Structures

Figure: High-dimensional Real-World Data: X = [x1,...,x,,] in R” lying on
a mixture of low-dimensional submanifolds UY_, M; C RP.

The main objective of learning from (samples of) real-world data:

Find a most compact and simple representation of the data.
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Fitting Class Labels via a Deep Network
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Figure: Black Box Classification: y is the class label of & represented as a
“one-hot” vector in R*. To learn a nonlinear mapping f(-,0) : © > y, say
modeled by a deep network, using cross-entropy (CE) loss.

min CE(9,.y) = ~E[(y.loglf(,0))] ~ —- 3w loglf (@ 0)). (1)

Prevalence of neural collapse during the terminal phase of deep learning training,
Papyan, Han, and Donoho, 2020.
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Represent Multi-class Multi-dimensional Data

Given samples

X =[z1,...,x,] CRP RY
from a mixture of -,
k submanifolds: M = U?=1Mj, f(@,0)

seek a good representation
Z = [z1,...,2m) C RY through
a continuous mapping:
f(xz,0): x e RP — z € R
Goals of “re-present” the data:
® from non-parametric (samples) to more compact (models).
® from nonlinear structures in X to linear in Z C UleSj.

® from separable X to maximally discriminative Z.
What constitutes a good representation? (why a DNN?)
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Seeking a Linear Discriminative Representation (LDR)

Desiderata: Representation z = f(x, ) have the following properties:

@ Within-Class Compressible: Features of the same class/cluster should
be highly compressed in a low-dimensional linear subspace.

@® Between-Class Discriminative: Features of different classes/clusters
should be in highly incoherent linear subspaces.

©® Maximally Informative Representation: Dimension (or variance) of
features for each class/cluster should be as large as possible.

Is there a principled objective for all such properties, together?
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LDR Representation via Principle of Rate Reduction Theoretical justification

Compactness Measure for Linear/Gaussian Representation

Theorem (Coding Length, Ma, TPAMI'07)

The number of bits needed to encode data X = [x1,x2, ..., x,,] € RP*X™
up to a precision ||x — &||2 < € is bounded by:

D D
L(X,e) = (m; >logdet <I+ WXXT) .

This can be derived from constructively quantifying SVD of X or by
sphere packing vol(X) as samples of a noisy Gaussian source.

Linear subspace

Gaussian source  gyey
T; = Ubi

gi1é;

D
u1 ]RD R
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LDR Representation via Principle of Rate Reduction Theoretical justification

Compactness Measure for Linear/Gaussian Representation

If X is not (piecewise) linear or Gaussian, consider a nonlinear mapping:

c RDXm f(m’e)

X =[z1,...,2n) Z(0) = [z1, 22, ..., 2m] € R™,

The average coding length per sample (rate) subject to a distortion e:

1 d
R(Z,¢) = ; logdet (I + WZZT> . (2)

Rate distortion is an intrinsic
measure for the volume of all features.

vol(Z)
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Uz
Compactness Measure for Mixed Linear Representations

The features Z of multi-class data

X =X1UX,U--UX CU_M;.

may be partitioned into multiple subsets:

val(Z')

Z=7Z1UZyU---UZ, cU_S;.

W.r.t. this partition, the average coding rate is:

R¢(Z,e | I0) :Z logdet< ZHjZT), (3)
7j=1

L4
tr(IIj)eQ

where IT = {I1; € Rmxm};?:l encode the membership of the m samples
in the k classes: the diagonal entry II;(i,¢) of II; is the probability of
sample i belonging to subset j. Q@ ={IT | II; = I,II; > 0.}
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LDR Representation via Principle of Rate Reduction Theoretical justification

Measure for Linear Discriminative Representation (LDR)

A Fundamental Idea: maximize the difference between the coding rate
of all features and the average rate of features in each of the classes:

1 X (11,
AR Z,II,¢) = - logdet <I+ izzT) _ vl log det (I+
2 me2 2m

ZH]-ZT) )
j=1

tr(IL;)e?

R e
This difference is called rate reduction:
® |arge R: expand all features Z as large as possible.

® Small R°: compress each class Z; as small as possible.
J

Slogan: similarity contracts and dissimilarity contrasts!
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Ul T
Interpretation of MCR?: Sphere Packing and Counting

S

vol(Z')

i)
Example: two subspaces S; and S in R2.
® log #(green spheres + blue spheres) = rate of span of all samples R.
® log #(green spheres) = rate of the two subspaces R°.
® log #(blue spheres) = rate reduction gain AR.
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LDR Representation via Principle of Rate Reduction Theoretical justification

Principle of Maximal Coding Rate Reduction (MCR?)
[Yu, Chan, You, Song, Ma, NeurlPS2020]

Learn a mapping f(x, ) (for a given partition II):

f(,0)

X Z(0) 2 AR(Z(6),11,¢) (4)

so as to Maximize the Coding Rate Reduction (MCR?):
max AR(Z(9),I1,¢) = R(Z(0),e) — R°(Z(0),¢ | II),
subject to || Z;(0)||F = m;, IT € Q. (5)

Since AR is monotonic in the scale of Z, one needs to:
normalize the features z = f(x,0) so as to compare Z() and Z(¢')!

Batch normalization, Sergey loffe and Christian Szegedy, 2015.

Layer normalization'16, instance normalization’16; group normalization'18...
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Uz
Theoretical Justification of the MCR? Principle

Theorem (Informal Statement [Yu et.al., NeurlPS2020])

Suppose Z* = Z7 U --- U Z} is the optimal solution that maximizes the
rate reduction (5). We have:

® Between-class Discriminative: As long as the ambient space is
adequately large (d > Zle d;), the subspaces are all orthogonal to
each other, i.e. (Z;)TZ; =0 fori # j.

® Maximally Informative Representation: As long as the coding
precision is adequately high, i.e., €* < min; {%%} each subspace

achieves its maximal dimension, i.e. rank(Z5) = d;. In addition, the
largest d; — 1 singular values of Z7 are equal.

A new slogan, beyond Aristotle:
The whole is to be maximally greater than the sum of the parts!
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LDR Representation via Principle of Rate Reduction Experimental results

Experiment |: Supervised Deep Learning

Experimental Setup: Train f(x, ) as ResNet18 on the CIFAR10
dataset, feature z dimension d = 128, precision €2 = 0.5.
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Figure: (a). Evolution of R, R°, AR during the training process; (b). Training

loss versus testing loss.
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LDR Representation via Principle of Rate Reduction Experimental results

Visualization of Learned Representations Z
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Figure: PCA of learned representations from MCR? and cross-entropy.

No neural collapse!
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LDR Representation via Principle of Rate Reduction Experimental results

Visualization - Samples along Principal Components
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Figure: Top-10 “principal” images for class - “Bird” and “Ship” in the CIFAR10.
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LDR Representation via Principle of Rate Reduction Experimental results

Experiment Il: Robustness to Label Noise

| RaTio=0.0 Ratio=0.1 Ramio=0.2 RaTio=0.3 Ratio=04 Ratio=0.5

0,939 0.4909 (561 .71 0.724 0,603
0.940 0.911 0.897 0.881 0,866 0.843

CE Traminc
MCR? TraNING

Table 1: Classification results with features learned with labels corrupted at different levels.
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Figure: Evolution of R, R®, AR of MCR? during training with corrupted labels.
Represent only what can be jointly compressed.
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o S
ReduNet: A White-box Deep Network from MCR?

A white-box, forward-constructed, multi-channel convolution deep neural
network from maximizing the rate reduction via projected gradient flow:

Z=n- ?ZR st. Zc Sl

DA R
Zin =20

ReduNet: A Whitebox Deep Network from Rate Reduction (JMLR'22):
https://arxiv.org/abs/2105.10446
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LDR Representation via Principle of Rate Reduction Experimental results

Deep Networks for Linear Discriminative Representations

Comparison with conventional DNNs:

H Conventional DNNs ‘

ReduNets

Objectives

label fitting

rate reduction

Deep architectures

trial & error

iterative optimization

Layer operators

empirical

projected gradient

Shift invariance

CNNs+augmentation

invariant ReduNets

Initializations

random /pre-design

forward computed

Training/fine-tuning

back prop

forward /back prop

Interpretability

black box

white box

Representations

hidden/latent

incoherent subspaces
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Transcription: Close the Loop of Encoding and Decoding

From One-sided to Closed-Loop Representation

MCR?: X @9 7). max AR(Z(0),T1,€).

Features learned are more interpretable, independent, rich, and robust.

However:
® Need to choose a proper feature dimension d.
® How good are the learned representation Z7
® Anything missing, anything unexpected: dim(X) = dim(Z)?
® Can we go from the feature Z back to the data X7

® |s an LDR adequate to generate real-world (visual) data?
Can we find a closed-loop (auto-encoding) data representation:

f(,0)

X z(0) 2B %o (6)
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Low-dim Representation for High-Dim Data

Assumption: the data X lies on a low-dimensional submanifold X C M
or multiple ones: X C Ule./\/tj in a high-dimensional space € RP:

RD

Goal: seeking a low-dim representation Z in R% (d < D) for the data X
on low-dim submanfiolds such that:

(z,0)

X cR? 1Dz crd B, % & X eRP. (7)
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))
Problem Formulation

Desiderata for a good representation:

® Geometry: f and g are continuous and approximately isometric.
¢ Auto Encoding/Embedding for the data X:

g(f(M)) =M, or g(f(M;))=M,;. (8)
Caveats: we do not know dim(M) nor d; = dim(M,). Often
d>dim(./\/l) ofr d>di+do+---+dp.

Structure of the learned Z C f(M) often remains “hidden” in R
® So further wish the feature Z explicitly simple, say an LDR:

. e S
fIM) = S or
S
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Three Classic Simpler Cases

One low-dim linear subspace: Principal Component Analysis (PCA)
xcs? YV zcst VX csP. (9)

Multiple linear subspaces: Generalized PCA (GPCA)!

X C U?lej M U?lej' C Sj M) X C U;?:lSj. (10)

One low-dim nonlinear submanifold: Nonlinear PCAZ2

X cMmP I@0 g gl 9= % o D, (11)

The most general, likely the most useful, case:

(z:m)

0 ~
X C U?Zle —M% U?lej C Sj g—) X C U?:le- (12)

!Generalized principal component analysis, R. Vidal, Yi Ma, and S. Sastry, 2005.
2Nonlinear PCA using autoassociative neural networks, M. Krammer, 1991.
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A closed-Loop formulation
Principal Component Analysis (Auto Encoding)

One low-dim linear subspace: principal component analysis (PCA)
xcs?P V' izcst VyxcsPh. (13)

Solve the following optimization problem:
min | X — X2 st. X=vVvTX, VeO(D,ad). (14)
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A closed-Loop formulation
Principal Component Analysis (Auto Encoding)

One low-dim linear subspace: principal component analysis (PCA)

Xcs?P Vi izcst Yy X csP
Solve the following optimization problem:
min | X — X2 st. X=vVvTX, VeO(D,ad).

One low-dim nonlinear submanifold: Nonlinear PCA

X cmP 1@ g ogd 9= % o D,

Solve the following optimization problem:
min | X — X[} st X =g(f(X,n),0).
N h/—/
d(X,X)?

What is the right distance d(X, X), say for images?
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Auto Encoding and its Difficulties

Nonlinear PCA: Auto-encoding (AE) (Krammer'91)

(z.m)

@9 | 7 cgd 9=,

X cmP L0 X c MP, (17)
Assuming a generative model: p(x|z,©) and p(z, ©), maximal likelihood:
maxP(X,0) ~p(@,0) = [ plalz Op(z0)dz. (18

is in general intractable, so is to compute the true posterior

P(Z|X7 @) ~ p(z|m, @) = p($|z, @)p(Z, @)/p(m7 @) (19)
Instead optimize certain variational lower bounds (VAE):3

max _,DKL(ﬁ(z‘:u U),P(% 6)) + Eﬁ(z\:c,n) [logp(ac]z, @)] . (20)
——

surrogate

3 Auto-Encoding Variational Bayes, D. Kingma and M. Welling; 2014.
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GAN and its Caveats
Learning generative models via discriminative approaches? (Tu'2007)
Generative Adversarial Nets (GAN) (Goodfellow'2014):

7z 9= % x =0 g (21)

A minimax game between generator and discriminator:

H%in max Ep(z) [logd(x,0)] + Ep) [1 — log d(gA(z, n),0)]. (22)
T~ Pg

This is equivalent to minimize the Jensen-Shannon divergence:

Dys(p,pg) = D (pll (0 +1g)/2) + Drr(pgll(0 +1g)/2).  (23)

But the J-S divergence is extremely difficult,
if not impossible, to compute and optimize.
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))
GAN and its Caveats

An Example: distance between distributions in high-dim space with
non-overlapping low-dim supports. (always the case in high-dim!)

Replace D g with the Earth-Mover distance or Wasserstein-1 distance:

Wl(papg) = el'il{gp )E(w,y)Nw[Hm - yHl]- (24)
™ g

® Hard to compute Dyg(p,pg) or Wi(p,pg) accurately and efficiently.

® Either Djg or W7 has no closed-form even between two Gaussians!
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Rate Reduction as Distance between Subspace Gaussians

Rate reduction AR = log #(blue spheres) gives a closed-form distance
between two (non-overlapping) subspace Gaussians S; and S5!

S

vol(Z')

vol(Z)
A good measure for the (LDR-like) features Z, but what about d(X, X)?

f(,0)

b's , 7z B % (25)

Question: do we ever need to measure in the data x space?
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

A New Closed-Loop Formulation
Goal: Transcribe the data X C U?Zle onto an LDR Z C UleSj:

fM;)=8; with §LS; and g(f(M;))=M,;. (26)
linear discriminative auto-embedding

Is it possible to measure everything internally in the feature space?

f(m»e) o f(m79)

X 7z BN % Z. (27)
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Measure Data Difference through Their Features
Measure difference in X; and X through their features Z; and Z;:

f(a,0) g(z,m) Xj f(x,0) Zj7 j=1,...,k. (28)

X; Z;

with the rate reduction measuring the error:

AR(Z;,Z;) = R(Z; U Z;) — %(R(Zj) +R(Z))), j=1,....k (29)
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Measure Data Difference through Their Features
Measure difference in X; and X through their features Z; and Z;:
f(,0)

A~

z, =N, %, JCN g =1k (28)
with the rate reduction measuring the error:

AR(Z;,Z;) = R(Z;U Z;) — %(R(Zj) +R(Zj), j=1,...,k (29)

X

Decoder/controller g minimizes the difference between X and X:

k k
d(X,X) = n%inz AR(Z;,Z;) = mninz AR(Zj, f(9(Zj,n).0)).
=1 =1
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Measure Data Difference through Their Features
Measure difference in X; and Xj through their features Z; and Zj:

x; L&D, g, 9C0  %, J@O g =1,k (28)

with the rate reduction measuring the error:

AR(Z;,Z;) = R(Z;U Z;) — %(R(Zj) +R(Zj), j=1,...,k (29)

Decoder/controller g minimizes the difference between X and X:
) k R k
d(X,X) = n%inz AR(Z;,Z;) = min > AR(Z;, f(9(Z;,n),6)).
j=1 j=1
Encoder/sensor f amplifies any difference between X and X:
k
d(X,X) = m@aXZAR(Zj, = maxz AR(f(X;,0), f(X;,0)).
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Dual Roles of the Encoder and Decoder

The encoder f needs to be a discriminative sensor that can discern and
amplify any error between the distributions between X and X.

Reason: for a fixed encoder f, the decoder g can easily produce an
ambiguous decoding such that the error between Z and Z is zero!

zeR?
Sz = Img(s:c)
g(z) xz e RP
xr
\/\ Img(S;)
Null space of f
gof#Id,but fog=1d
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Dual Roles of the Encoder and Decoder

f is both an encoder and sensor; and g is both a decoder and controller.
They form a closed-loop feedback control system:

9(z,m)
R?

f

° o .01 .0

A closed-loop notion of “self-consistency” between X and X is given by
a pursuit-evasion game between f as a “evader” and g as a “pursuer”:
k

D(X, X) = minmax >  AR(f(X;,0), f(9(f(X;,0),1).0)). (30)
Jj=1

Z;(0) Z;(0,m)
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s ey
Overall Objective: Self-Consistency & Parsimony

The overall minimax game between the encoder f and decoder g:
® f maximizes the rate reduction of the features Z of the data X;

® g minimizes the rate reduction of the features Z of the decoded X.

A minimax program to learn a multi-class LDR for data X = U;‘?:lXj:

k
min max AR(f(X,0)) + AR(M(X.0,1)) + Z AR(f(X;,0),h(X;,0,7m))

g N 7=1 . .
Expansive encode Compressive decode Contrastive & Contractive

with h(z) = f o go f(x), or equivalently

k
min max AR(Z(0)) + AR(Z(0,m)) + > _ AR(Z;(0), Z;(0,n)).
j=1
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s ey
Overall Objective: Self-Consistency & Parsimony

The overall minimax game between the encoder f and decoder g:
® f maximizes the rate reduction of the features Z of all the data X

® ¢ minimizes the rate reduction of the features Z of the decoded X.

A minimax program to learn a one-class LDR for data X:

Binary: min max AR(f(X,0),h(X,0,1))
U

Contrastive & Contractive
or equivalently

Binary: min max AR(Z(9), Z(0, n)).
"
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Characteristics of the Overall Objective

k

min max AR(Z(0)) + AR(Z(0,m)) + > _ AR(Z;(0), Z;(0,n)).
j=1

e Simplicity: all terms are closed-form rate reduction on features.

® Consistency: closed-loop encoding and decoding are all needed.

® Excplicit: distribution of learned features Z is not hidden (an LDR).

® No need of any direct explicit distance between X and X.

® No need to specify a prior or a surrogate target distribution.

® No more approximations or bounds for (KL-, JS-, W-) “distances”.

® No heuristics or regularizing terms.

Self-consistency and Parsimony are all you need to model X7
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification on Visual Data

Experimental Setup:

e Datasets: MNIST, CIFAR10, STL-10, CelebA faces, LSUN bedroom,
ImageNet

Network architectures: basic DCGAN & ResNet (not customized).

Feature space: the same 128-dim regardless of data resolution or size

¢ Quantization precision: the same €2 = 0.5.
e Optimizer: Adam with the same hyperparameters 51 = 0, 52 = 0.9.

® Linear rate: the same initial 0.00015 with linear decay.

No other regularization, heuristics, or engineering tricks.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: Fair Comparison to Baselines

Method ‘ GAN GAN (LDA-Binary) VAE-GAN LDA-Binary LDA-Multi
MNIST ISt | 2.08 1.95 2.21 2.02 2.07
FID | |24.78 20.15 33.65 16.43 16.47
CIFAR-10 ISt | 7.32 7.23 7.11 8.11 7.13
D | |26.06 22.16 43.25 19.63 23.91

Table: Quantitative comparison on MNIST and CIFAR-10. Average Inception
scores (IS) and FID scores. 1 means higher is better. | means lower is better.

(b) CIFAR-10 (c) ImageNet

Figure: Qualitative comparison on MNIST, CIFAR-10 and ImageNet.

Ma (EECS Department, UC Berkeley) Data Transcription & Rate Reduction January 28, 2022 37/63



Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification on Visual Data

o |

(a) MNIST

(b) CIFAR10
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s200
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600 smo 780 o0 1300

(c) ImageNet

Figure: Visualizing the alignment between Z and Z: |Z7 Z|.

(a) mnisT x

b) MNIST X

(c) arario x (d) ciFaRi0 X

(e) ImageNet X

Figure: Visualizing the auto-encoding property: @ =~ & = g o f(x).

Ma (EECS Department, UC Berkeley)

Data Transcription & Rate Reduction

January 28, 2022

(f) ImageNet X
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Transcription: Close the Loop of Encoding and Decoding

Empirical Verification: Comparison on MNIST
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Figure: Reconstruction results of different methods with the input data.
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Empirical Verification: MNIST PCAs

The feature z in each of the k principal subspaces can be modeld as a
degenerate Gaussian from the PCA Z; = V}EjU]T:

Tj
zjwij—angoéfvé, where n] ~N(0,1), j=1,...,k. (31)

=1
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(a) ACGAN (b) InfoGAN (c) LDR-Multi
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: MNIST PCAs

The feature z in each of the k principal subspaces can be modeld as a
degenerate Gaussian from the PCA Z; = V}EjUJT:

Tj
zj~ Zj —i—Zn{aﬁ-vé, where n] ~N(0,1), j=1,...,k. (32)
=1

Nearest subspace classification based on the computed PCAs.

Table 3: Classification accuracy on MNIST, comparing to classifier based VAE methods (Parmar

et al., 2021). Most of those VAE-based methods require auxiliary classifiers to boost classification
performance,

Method | VAE | Factor VAE | Guide-VAE | DC-VAE | LDR-Binary | LDR-Multi
MNIST | 97.12% | 93.65% | 9851% | 98.71% |

89.12% | 9830%
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: Interpolation between Samples
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Figure: Images generated from interpolating between samples in different classes.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: Transformed MNIST
Original data X and their decoded version X on transformed MNIST.
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(c) Components of “0"

Ma (EECS Department, UC Berkeley)

(d) Components of “1”

(e) Components of “2"

January 28, 2022
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Transcription: Close the Loop of Encoding and Decoding

Empirical Verification: “Principal Images” of CIFAR10
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| Transcription: Close the Loop of Encoding and Decoding [
Empirical Verification: “Principal Images” of CIFAR10
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Empirical Verification: “Principal Images” of CIFAR10
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Figure: Reconstructed images X from features Z close to the principal
components learned for each of the 10 classes of CIFAR-10.

Different classes are disentangled as principal subspaces.
Visual attributes are disentangled as principal components.
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Empirical Verification: Principal Components of CelebA

Figure: Generated images by sampling along the 9-th and 23-th principal
components of the learned features Z, for the CelebA dataset.
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Generated along one PC Generated along another PC

Visual attributes are disentangled as principal components.
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Empirical Verification: CelebA Randomly Generated X
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: CelebA Input X
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(a) Original X

Figure: Visualizing the original & and corresponding decoded & results on Celeb-A
dataset. The LDR model is trained from LDR-Binary.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: CelebA Decoded X

(a) Decoded X

Figure: Visualizing the original  and corresponding decoded & results on Celeb-A
dataset. The LDR model is trained from LDR-Binary.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: LSUN Bedroom Input X

(a) Original X

Figure: Visualizing the original & and corresponding decoded & results on
LSUN-bedroom dataset. The LDR model is trained from LDR-Binary.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: LSUN Bedroom Decoded X

(a) Decoded X

Figure: Visualizing the original « and corresponding decoded & results on
LSUN-bedroom dataset. The LDR model is trained from LDR-Binary.
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Empirical Verification: ImageNet 10-Class Input X

a) Original X
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Empirical Verification: ImageNet 10-Class Decoded X

— e = =

b) Decoded X
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: ImageNet Feature Similarity
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Figure: Visualizing feature alignment: (a) among features |Z " Z|, (b) between
features and decoded features |Z T Z|. These results obtained after 200,000
iterations.

Ma (EECS Department, UC Berkeley) Data Transcription & Rate Reduction January 28, 2022 55/63



Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: Quantitative
Table: Comparison on CIFAR-10, STL-10, and ImageNet.

CIFAR-10 STL-10 ImageNet

Method

ISt FIDy | ISt FID) | ISt FID)
GAN based methods
DCGAN 6.6 - 7.8 - - -
SNGAN 74 293 | 9.1 401 - 48.73
CSGAN 81 196 - - - -
LOGAN 8.7 17.7 - - - -
VAE/GAN based methods
VAE 3.8 11538 - - - -
VAE/GAN 74 398 - - - -
NVAE - 50.8 - - - -
DC-VAE 8.2 179 | 81 419 - -
LDR-Binary (ours) 81 196 | 84 38.6 | 7.74 46.95
LDR-Multi (ours) 71 239 | 7.7 457 | 644 5551
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Empirical Verification: Ablation Study

Training the ImageNet with networks of different width.

channel#=1024 channel#=512 channel#=256
BS=1800 success success success
BS=1600 success success success
BS=1024 failure success success
BS=800 failure failure success
BS=400 failure failure failure

Table: Ablation study on ImageNet about tradeoff between batch size (BS) and
network width (channel #).

No mode collapse!
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Empirical Verification: Other Ablation Studies

min max AR(Z(0)) + AR(Z Z AR(Z;(9), Z;(0,7)).

Other ablations studies:

® the importance of the closed loop.
® the importance of rate reduction versus cross entropy.
® the three terms in the objective function.

® sensitivity to spectral normalization.

choices in feature dimension or channel number.

see details in the paper https://arxiv.org/abs/2111.06636
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Conclusions and Open Problems

Conclusions: Closed-Loop Transcription to an LDR

RP m \ R

o1

® universality: embedding real-world data to a simple and explicit
linear discriminative representation.

® parsimony: a good tradeoff in rate reduction via a minimax game
between an encoder and a decoder.

e feedback: a closed-loop feedback control system between a sensor
and a controller.

® self-consistency: no need of any surrogate distance in the external
data space.
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Open Mathematical Problems

For the closed-loop minimax rate reduction program:

A~

k
mninmeax AR(Z(9)) + AR(Z(@,n)) + Z AR(Z;(9),Z;(6,n)).
j=1

® optimality: characterization of the equilibrium points?

¢ convergence of the closed-loop control problem (infinite-dim)?

¢ linearization of distribution supports (plastic manifold learning)?
¢ optimal density of the distributions (Brascamp-Lieb inequalities)?
® guarantees for approximate sample-wise auto-encoding?

¢ correct model selection (no under- or over-fitting)?
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Conclusions and Open Problems

Open Directions: Extensions and Connections

® How to scale up to hundreds and thousands of classes?
(variational forms for rate reduction...)

Internal computational mechanism for memory forming (in Nature)?
(incremental learning without catastrophic forgetting...)

Better feedback for generative quality and discriminative property?

Whitebox architectures for closed-loop transcription (ReduNet like)?

Closed-loop transcription to other types of low-dim structures?
(dynamical, causal, logical, symbolical, graphical...)

The principles of parsimony and self-consistency shall always rule!
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Conclusions and Open Problems

References: Learning via Rate Reduction and Transcription
@ Closed-Loop Data Transcription to an LDR via Minimaxing Rate Reduction
https://arxiv.org/abs/2111.06636 (under submission)

@® RedulNet: A Whitebox Deep Network from Rate Reduction (JMLR'22):
https://arxiv.org/abs/2105.10446

© Representation via Maximal Coding Rate Reduction (NeurlPS'20):
https://arxiv.org/abs/2006.08558

@ Classification via Minimal Incremental Coding Length (NIPS 2007):
http://people.eecs.berkeley.edu/~yima/psfile/MICL_SJIS.pdf

@ Clustering via Lossy Coding and Compression (TPAMI 2007):
http://people.eecs.berkeley.edu/~yima/psfile/Ma-PAMIO7 .pdf
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Parsimony and self-consistency are all you need to
learn
a compact and simple memory for real-world data.

Thank you!
Questions, please?

“Learners need endless feedback more than they need endless
teaching.”
— Grant Wiggins

&+ SIMONS
5. N LQN
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