#### Closed-Loop Data Transcription via Minimaxing Rate Reduction

#### Yi Ma

EECS Department, UC Berkeley

January 28, 2022

Xili Dai, Shengbang Tong, Mingyang Li, Ziyang Wu, Michael Psenka, Bill Zhai, Yaodong Yu, Kwan Ho Ryan Chan, Xiaojun Yuan, Harry Shum







< 47 ▶

E 6 4 E 6

### Outline

1 Motivation: Objectives of Learning from Data

2 LDR Representation via Principle of Rate Reduction Theoretical justification Experimental results

3 Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation Empirical verification



( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

#### High-Dim Data with Mixed Low-Dim Structures

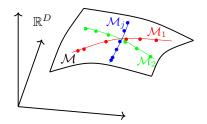


Figure: High-dimensional Real-World Data:  $X = [x_1, \ldots, x_m]$  in  $\mathbb{R}^D$  lying on a mixture of low-dimensional submanifolds  $\bigcup_{j=1}^k \mathcal{M}_j \subset \mathbb{R}^D$ .

The main objective of learning from (samples of) real-world data:

Find a most compact and simple representation of the data.

#### Fitting Class Labels via a Deep Network

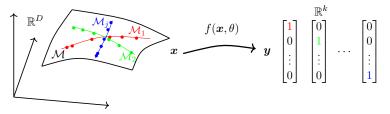


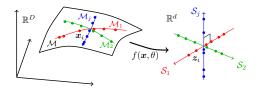
Figure: Black Box Classification: y is the class label of x represented as a "one-hot" vector in  $\mathbb{R}^k$ . To learn a nonlinear mapping  $f(\cdot, \theta) : x \mapsto y$ , say modeled by a deep network, using cross-entropy (CE) loss.

$$\min_{\theta \in \Theta} \mathsf{CE}(\theta, \boldsymbol{x}, \boldsymbol{y}) \doteq -\mathbb{E}[\langle \boldsymbol{y}, \log[f(\boldsymbol{x}, \theta)] \rangle] \approx -\frac{1}{m} \sum_{i=1}^{m} \langle \boldsymbol{y}_i, \log[f(\boldsymbol{x}_i, \theta)] \rangle.$$
(1)

*Prevalence of* **neural collapse** *during the terminal phase of deep learning training,* Papyan, Han, and Donoho, 2020.

# Represent Multi-class Multi-dimensional Data

Given samples  $X = [x_1, \dots, x_m] \subset \mathbb{R}^D$ from a mixture of k submanifolds:  $\mathcal{M} = \bigcup_{j=1}^k \mathcal{M}_j$ , seek a good representation  $Z = [z_1, \dots, z_m] \subset \mathbb{R}^d$  through a continuous mapping:



$$f(\boldsymbol{x}, \theta) : \boldsymbol{x} \in \mathbb{R}^D \mapsto \boldsymbol{z} \in \mathbb{R}^d.$$

Goals of "re-present" the data:

- from non-parametric (samples) to more compact (models).
- from nonlinear structures in  $oldsymbol{X}$  to linear in  $oldsymbol{Z} \subset \cup_{j=1}^k \mathcal{S}_j.$
- from separable X to maximally discriminative Z.

#### What constitutes a good representation? (why a DNN?)

# Seeking a Linear Discriminative Representation (LDR)

**Desiderata:** Representation  $\boldsymbol{z} = f(\boldsymbol{x}, \theta)$  have the following properties:

- Within-Class Compressible: Features of the same class/cluster should be highly compressed in a low-dimensional linear subspace.
- 2 Between-Class Discriminative: Features of different classes/clusters should be in highly incoherent linear subspaces.
- 3 Maximally Informative Representation: Dimension (or variance) of features for each class/cluster should be as large as possible.
  - Is there a principled objective for all such properties, together?

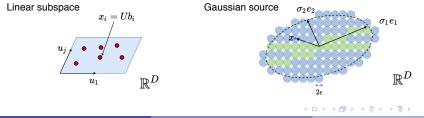
# Compactness Measure for Linear/Gaussian Representation

#### Theorem (Coding Length, Ma, TPAMI'07)

The number of bits needed to encode data  $X = [x_1, x_2, ..., x_m] \in \mathbb{R}^{D \times m}$ up to a precision  $||x - \hat{x}||_2 \le \epsilon$  is bounded by:

$$L(\mathbf{X}, \epsilon) \doteq \left(\frac{m+D}{2}\right) \log \det \left(\mathbf{I} + \frac{D}{m\epsilon^2} \mathbf{X} \mathbf{X}^{\top}\right)$$

This can be derived from constructively quantifying SVD of X or by sphere packing vol(X) as samples of a noisy Gaussian source.



#### Compactness Measure for Linear/Gaussian Representation

If X is not (piecewise) linear or Gaussian, consider a nonlinear mapping:

$$oldsymbol{X} = [oldsymbol{x}_1, \dots, oldsymbol{x}_m] \in \mathbb{R}^{D imes m} \xrightarrow{f(oldsymbol{x}, heta)} oldsymbol{Z}( heta) = [oldsymbol{z}_1, oldsymbol{z}_2, \dots, oldsymbol{z}_m] \in \mathbb{R}^{d imes m}$$

The average coding length per sample (rate) subject to a distortion  $\epsilon$ :

$$R(\boldsymbol{Z},\epsilon) \doteq \frac{1}{2} \log \det \left( \boldsymbol{I} + \frac{d}{m\epsilon^2} \boldsymbol{Z} \boldsymbol{Z}^{\top} \right).$$
(2)

Rate distortion is an intrinsic measure for the volume of all features.





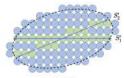
8/63

# Compactness Measure for Mixed Linear Representations

The features  $oldsymbol{Z}$  of multi-class data

$$oldsymbol{X} = oldsymbol{X}_1 \cup oldsymbol{X}_2 \cup \cdots \cup oldsymbol{X}_k \ \subset \cup_{j=1}^k \mathcal{M}_j.$$

may be partitioned into multiple subsets:



$$\operatorname{vol}(Z')$$

$$oldsymbol{Z} = oldsymbol{Z}_1 \cup oldsymbol{Z}_2 \cup \cdots \cup oldsymbol{Z}_k \ \subset \cup_{j=1}^k \mathcal{S}_j.$$

W.r.t. this partition, the average coding rate is:

$$R^{c}(\boldsymbol{Z}, \epsilon \mid \boldsymbol{\Pi}) \doteq \sum_{j=1}^{k} \frac{\mathsf{tr}(\boldsymbol{\Pi}_{j})}{2m} \log \det \left( \boldsymbol{I} + \frac{d}{\mathsf{tr}(\boldsymbol{\Pi}_{j})\epsilon^{2}} \boldsymbol{Z} \boldsymbol{\Pi}_{j} \boldsymbol{Z}^{\top} \right), \quad (3)$$

where  $\Pi = {\{\Pi_j \in \mathbb{R}^{m \times m}\}_{j=1}^k}$  encode the membership of the *m* samples in the *k* classes: the diagonal entry  $\Pi_j(i,i)$  of  $\Pi_j$  is the probability of sample *i* belonging to subset *j*.  $\Omega \doteq {\{\Pi \mid \sum \Pi_j = I, \Pi_j \ge 0.\}}$ 

# Measure for Linear Discriminative Representation (LDR)

**A Fundamental Idea:** maximize the **difference** between the coding rate of <u>all features</u> and the average rate of <u>features in each of the classes</u>:

$$\Delta R' \mathbf{Z}, \mathbf{\Pi}, \epsilon) = \underbrace{\frac{1}{2} \log \det \left( \mathbf{I} + \frac{d}{m\epsilon^2} \mathbf{Z} \mathbf{Z}^\top \right)}_{R} - \underbrace{\frac{\mathbf{X}}{2m} \frac{\operatorname{tr}(\mathbf{\Pi}_j)}{2m} \log \det \left( \mathbf{I} + \frac{d}{\operatorname{tr}(\mathbf{\Pi}_j)\epsilon^2} \mathbf{Z} \mathbf{\Pi}_j \mathbf{Z}^\top \right)}_{R^c}.$$

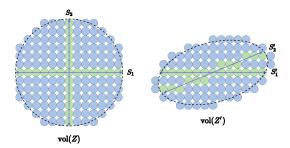
This difference is called rate reduction:

- Large R: expand all features Z as large as possible.
- Small  $R^c$ : compress each class  $Z_j$  as small as possible.

#### Slogan: similarity contracts and dissimilarity contrasts!

<日<br />
<</p>

# Interpretation of MCR<sup>2</sup>: Sphere Packing and Counting



#### **Example:** two subspaces $S_1$ and $S_2$ in $\mathbb{R}^2$ .

- $\log \#(\text{green spheres} + \text{blue spheres}) = \text{rate of span of all samples } R$ .
- $\log \#(\text{green spheres}) = \text{rate of the two subspaces } R^c$ .
- $\log \#(\text{blue spheres}) = \text{rate reduction gain } \Delta R$ .

Principle of Maximal Coding Rate Reduction (MCR<sup>2</sup>) [Yu, Chan, You, Song, Ma, NeurIPS2020]

Learn a mapping  $f(\boldsymbol{x}, \theta)$  (for a given partition  $\boldsymbol{\Pi}$ ):

$$X \xrightarrow{f(\boldsymbol{x},\theta)} \boldsymbol{Z}(\theta) \xrightarrow{\boldsymbol{\Pi},\epsilon} \Delta R(\boldsymbol{Z}(\theta),\boldsymbol{\Pi},\epsilon)$$
 (4)

so as to Maximize the Coding Rate Reduction ( $MCR^2$ ):

$$\max_{\theta} \quad \Delta R(\boldsymbol{Z}(\theta), \boldsymbol{\Pi}, \epsilon) = R(\boldsymbol{Z}(\theta), \epsilon) - R^{c}(\boldsymbol{Z}(\theta), \epsilon \mid \boldsymbol{\Pi}),$$
  
subject to  $\|\boldsymbol{Z}_{j}(\theta)\|_{F}^{2} = m_{j}, \boldsymbol{\Pi} \in \Omega.$  (5)

Since  $\Delta R$  is *monotonic* in the scale of Z, one needs to: normalize the features  $z = f(x, \theta)$  so as to compare  $Z(\theta)$  and  $Z(\theta')$ !

Batch normalization, Sergey loffe and Christian Szegedy, 2015. Layer normalization'16, instance normalization'16; group normalization'18...

3

・ロト ・ 同ト ・ ヨト ・ ヨト

# Theoretical Justification of the MCR<sup>2</sup> Principle

#### Theorem (Informal Statement [Yu et.al., NeurIPS2020])

Suppose  $Z^* = Z_1^* \cup \cdots \cup Z_k^*$  is the optimal solution that maximizes the rate reduction (5). We have:

Between-class Discriminative: As long as the ambient space is adequately large (d ≥ ∑<sub>j=1</sub><sup>k</sup> d<sub>j</sub>), the subspaces are all orthogonal to each other, i.e. (Z<sub>i</sub><sup>\*</sup>)<sup>T</sup>Z<sub>j</sub><sup>\*</sup> = 0 for i ≠ j.

Maximally Informative Representation: As long as the coding precision is adequately high, i.e., ε<sup>4</sup> < min<sub>j</sub> {m<sub>j</sub> d<sup>2</sup>/d<sub>j</sub><sup>2</sup>}, each subspace achieves its maximal dimension, i.e. rank(Z<sub>j</sub><sup>\*</sup>) = d<sub>j</sub>. In addition, the largest d<sub>j</sub> − 1 singular values of Z<sub>j</sub><sup>\*</sup> are equal.

A new slogan, beyond Aristotle:

The whole is to be maximally greater than the sum of the parts!

13/63

< □ > < □ > < □ > < □ > < □ > < □ >

# Experiment I: Supervised Deep Learning

**Experimental Setup:** Train  $f(x, \theta)$  as ResNet18 on the CIFAR10 dataset, feature z dimension d = 128, precision  $\epsilon^2 = 0.5$ .

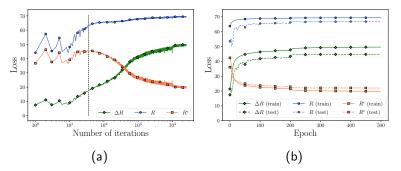


Figure: (a). Evolution of  $R, R^c, \Delta R$  during the training process; (b). Training loss versus testing loss.

### Visualization of Learned Representations Z

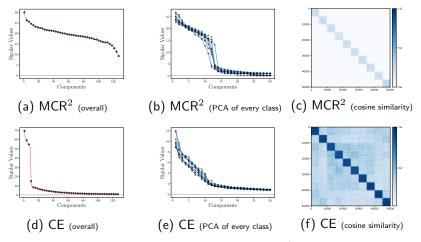


Figure: PCA of learned representations from MCR<sup>2</sup> and cross-entropy.

#### No neural collapse!

|                                   |                                     |         | V 2 = V    | = *) < (* |
|-----------------------------------|-------------------------------------|---------|------------|-----------|
| Ma (EECS Department, UC Berkeley) | Data Transcription & Rate Reduction | January | / 28, 2022 | 15 / 63   |

# Visualization - Samples along Principal Components

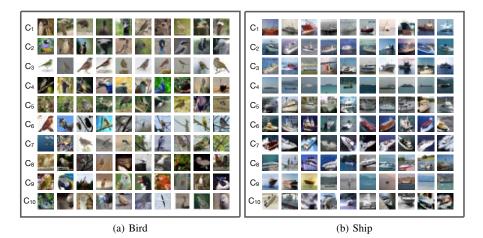


Figure: Top-10 "principal" images for class - "Bird" and "Ship" in the CIFAR10.

Image: A matrix

#### Experiment II: Robustness to Label Noise

|                           | RATIO=0.0 | Ratio=0.1 | Ratio=0.2 | RATIO=0.3 | Ratio=0.4 | Ratio=0.5 |
|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| CE TRAINING               | 0.939     | 0.909     | 0.861     | 0.791     | 0.724     | 0.603     |
| MCR <sup>2</sup> Training | 0.940     | 0.911     | 0.897     | 0.881     | 0.866     | 0.843     |

Table 1: Classification results with features learned with labels corrupted at different levels.

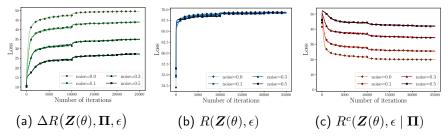


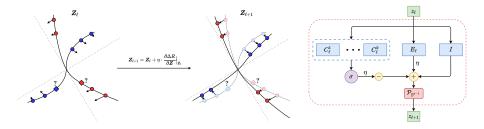
Figure: Evolution of  $R, R^c, \Delta R$  of MCR<sup>2</sup> during training with corrupted labels.

#### Represent only what can be jointly compressed.

# ReduNet: A White-box Deep Network from MCR<sup>2</sup>

A white-box, forward-constructed, multi-channel convolution deep neural network from maximizing the rate reduction via projected gradient flow:

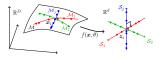
$$\dot{oldsymbol{Z}}=\eta\cdotrac{\partial\Delta R}{\partialoldsymbol{Z}}$$
 s.t.  $oldsymbol{Z}\subset\mathbb{S}^{d-1}.$ 



**ReduNet:** A Whitebox Deep Network from Rate Reduction (JMLR'22): https://arxiv.org/abs/2105.10446

# Deep Networks for Linear Discriminative Representations

Comparison with conventional DNNs:



|                      | Conventional DNNs | ReduNets               |  |
|----------------------|-------------------|------------------------|--|
| Objectives           | label fitting     | rate reduction         |  |
| Deep architectures   | trial & error     | iterative optimization |  |
| Layer operators      | empirical         | projected gradient     |  |
| Shift invariance     | CNNs+augmentation | invariant ReduNets     |  |
| Initializations      | random/pre-design | forward computed       |  |
| Training/fine-tuning | back prop         | forward/back prop      |  |
| Interpretability     | black box         | white box              |  |
| Representations      | hidden/latent     | incoherent subspaces   |  |

### From One-sided to Closed-Loop Representation

$$\mathsf{MCR}^2: \quad \boldsymbol{X} \xrightarrow{f(\boldsymbol{x}, \theta)} \boldsymbol{Z}(\theta): \quad \max_{\boldsymbol{\theta}} \Delta R(\boldsymbol{Z}(\theta), \boldsymbol{\Pi}, \epsilon).$$

Features learned are more interpretable, independent, rich, and robust.

However:

- Need to choose a proper feature dimension d.
- How good are the learned representation Z?
- Anything missing, anything unexpected:  $\dim(X) = \dim(Z)$ ?
- Can we go from the feature Z back to the data X?
- Is an LDR adequate to generate real-world (visual) data?

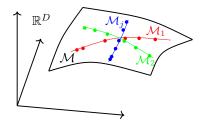
Can we find a closed-loop (auto-encoding) data representation:

$$X \xrightarrow{f(\boldsymbol{x},\theta)} Z(\theta) \xrightarrow{g(\boldsymbol{z},\eta)} \hat{X}?$$
 (6)

20 / 63

#### Low-dim Representation for High-Dim Data

**Assumption:** the data X lies on a low-dimensional submanifold  $X \subset \mathcal{M}$  or multiple ones:  $X \subset \bigcup_{j=1}^{k} \mathcal{M}_{j}$  in a high-dimensional space  $\in \mathbb{R}^{D}$ :



**Goal:** seeking a low-dim representation Z in  $\mathbb{R}^d$   $(d \ll D)$  for the data X on low-dim submanifolds such that:

$$X \subset \mathbb{R}^D \xrightarrow{f(x,\theta)} Z \subset \mathbb{R}^d \xrightarrow{g(z,\eta)} \hat{X} \approx X \in \mathbb{R}^D.$$
 (7)

21/63

# **Problem Formulation**

**Desiderata** for a good representation:

- Geometry: f and g are continuous and approximately isometric.
- Auto Encoding/Embedding for the data X:

$$g(f(\mathcal{M})) = \mathcal{M}, \text{ or } g(f(\mathcal{M}_j)) = \mathcal{M}_j.$$
 (8)

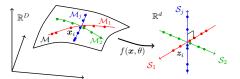
**Caveats:** we do not know dim $(\mathcal{M})$  nor  $d_j = \dim(\mathcal{M}_j)$ . Often

$$d > \dim(\mathcal{M})$$
 or  $d > d_1 + d_2 + \dots + d_k$ .

Structure of the learned  $Z \subset f(\mathcal{M})$  often remains "hidden" in  $\mathbb{R}^d$ !

• So further wish the feature Z explicitly simple, say an LDR:

$$f(\mathcal{M}) = \mathcal{S}$$
 or  
 $f(\mathcal{M}_j) = \mathcal{S}_j \text{ (with } \mathcal{S}_i \perp \mathcal{S}_j \text{)}.$ 



# Three Classic Simpler Cases

One low-dim linear subspace: Principal Component Analysis (PCA)

$$\boldsymbol{X} \subset \mathcal{S}^{D} \xrightarrow{\boldsymbol{V}^{T}} \boldsymbol{Z} \subset \mathcal{S}^{d} \xrightarrow{\boldsymbol{V}} \hat{\boldsymbol{X}} \subset \mathcal{S}^{D}.$$
(9)

Multiple linear subspaces: Generalized PCA (GPCA)<sup>1</sup>

$$oldsymbol{X} \subset \cup_{j=1}^k \mathcal{S}_j \xrightarrow{f(oldsymbol{x}, heta)} \cup_{j=1}^k oldsymbol{Z}_j \subset \mathcal{S}_j \xrightarrow{g(oldsymbol{z}, \eta)} \hat{oldsymbol{X}} \subset \cup_{j=1}^k \mathcal{S}_j.$$
 (10)

One low-dim nonlinear submanifold: Nonlinear PCA<sup>2</sup>

$$\boldsymbol{X} \subset \mathcal{M}^{D} \xrightarrow{f(\boldsymbol{x},\theta)} \boldsymbol{Z} \subset \mathcal{S}^{d} \xrightarrow{g(\boldsymbol{z},\eta)} \hat{\boldsymbol{X}} \subset \mathcal{M}^{D}.$$
(11)

The most general, likely the most useful, case:

$$\boldsymbol{X} \subset \cup_{j=1}^{k} \mathcal{M}_{j} \xrightarrow{f(\boldsymbol{x}, \theta)} \cup_{j=1}^{k} \boldsymbol{Z}_{j} \subset \mathcal{S}_{j} \xrightarrow{g(\boldsymbol{z}, \eta)} \hat{\boldsymbol{X}} \subset \cup_{j=1}^{k} \mathcal{M}_{j}.$$
(12)

<sup>1</sup>Generalized principal component analysis, R. Vidal, Yi Ma, and S. Sastry, 2005. <sup>2</sup>Nonlinear PCA using autoassociative neural networks, M. Krammer, 1991.

# Principal Component Analysis (Auto Encoding)

One low-dim linear subspace: principal component analysis (PCA)

$$\boldsymbol{X} \subset \mathcal{S}^{D} \xrightarrow{\boldsymbol{V}^{T}} \boldsymbol{Z} \subset \mathcal{S}^{d} \xrightarrow{\boldsymbol{V}} \hat{\boldsymbol{X}} \subset \mathcal{S}^{D}.$$
(13)

Solve the following optimization problem:

$$\min_{\boldsymbol{V}} \|\boldsymbol{X} - \hat{\boldsymbol{X}}\|_2^2 \quad \text{s.t.} \quad \hat{\boldsymbol{X}} = \boldsymbol{V}\boldsymbol{V}^T\boldsymbol{X}, \quad \boldsymbol{V} \in \mathsf{O}(D,d). \tag{14}$$

# Principal Component Analysis (Auto Encoding)

One low-dim linear subspace: principal component analysis (PCA)

$$\boldsymbol{X} \subset \mathcal{S}^{D} \xrightarrow{\boldsymbol{V}^{T}} \boldsymbol{Z} \subset \mathcal{S}^{d} \xrightarrow{\boldsymbol{V}} \hat{\boldsymbol{X}} \subset \mathcal{S}^{D}.$$
(13)

Solve the following optimization problem:

$$\min_{\boldsymbol{V}} \|\boldsymbol{X} - \hat{\boldsymbol{X}}\|_2^2 \quad \text{s.t.} \quad \hat{\boldsymbol{X}} = \boldsymbol{V}\boldsymbol{V}^T\boldsymbol{X}, \quad \boldsymbol{V} \in \mathsf{O}(D,d).$$
(14)

One low-dim nonlinear submanifold: Nonlinear PCA

$$X \subset \mathcal{M}^D \xrightarrow{f(\boldsymbol{x}, \theta)} Z \subset \mathcal{S}^d \xrightarrow{g(\boldsymbol{z}, \eta)} \hat{X} \subset \mathcal{M}^D.$$
 (15)

Solve the following optimization problem:

$$\min_{\theta,\eta} \underbrace{\|\boldsymbol{X} - \hat{\boldsymbol{X}}\|_2^2}_{d(\boldsymbol{X}, \hat{\boldsymbol{X}})^2} \quad \text{s.t.} \quad \hat{\boldsymbol{X}} = g(f(\boldsymbol{X}, \eta), \theta).$$
(16)

What is the right distance  $d(\mathbf{X}, \hat{\mathbf{X}})$ , say for images?

24 / 63

# Auto Encoding and its Difficulties

Nonlinear PCA: Auto-encoding (AE) (Krammer'91)

$$X \subset \mathcal{M}^D \xrightarrow{f(\boldsymbol{x},\theta)} Z \subset \mathcal{S}^d \xrightarrow{g(\boldsymbol{z},\eta)} \hat{X} \subset \mathcal{M}^D.$$
 (17)

Assuming a generative model:  $p(\boldsymbol{x}|\boldsymbol{z},\Theta)$  and  $p(\boldsymbol{z},\Theta)$ , maximal likelihood:

$$\max_{\Theta} P(\boldsymbol{X}, \Theta) \sim p(\boldsymbol{x}, \Theta) = \int p(\boldsymbol{x} | \boldsymbol{z}, \Theta) p(\boldsymbol{z}, \Theta) d\boldsymbol{z}.$$
 (18)

is in general intractable, so is to compute the true posterior

$$P(\boldsymbol{Z}|\boldsymbol{X},\Theta) \sim p(\boldsymbol{z}|\boldsymbol{x},\Theta) = p(\boldsymbol{x}|\boldsymbol{z},\Theta)p(\boldsymbol{z},\Theta)/p(\boldsymbol{x},\Theta).$$
(19)

Instead optimize certain variational lower bounds (VAE):<sup>3</sup>

$$\max - \mathcal{D}_{KL} \left( \underbrace{\hat{p}(\boldsymbol{z} | \boldsymbol{x}, \eta)}_{\text{surrogate}}, p(\boldsymbol{z}, \Theta) \right) + \mathbb{E}_{\hat{p}(\boldsymbol{z} | \boldsymbol{x}, \eta)} \left[ \log p(\boldsymbol{x} | \boldsymbol{z}, \Theta) \right].$$
(20)

25 / 63

<sup>3</sup>Auto-Encoding Variational Bayes, D. Kingma and M. Welling, 2014. A B S S A

# GAN and its Caveats

Learning generative models via **discriminative** approaches? (Tu'2007) Generative Adversarial Nets (GAN) (Goodfellow'2014):

$$Z \xrightarrow{g(\boldsymbol{z},\eta)} \hat{X}, X \xrightarrow{d(\boldsymbol{x},\theta)} 0, 1.$$
 (21)

A minimax game between generator and discriminator:

$$\min_{\eta} \max_{\theta} \mathbb{E}_{p(\boldsymbol{x})} \Big[ \log d(\boldsymbol{x}, \theta) \Big] + \mathbb{E}_{p(\boldsymbol{z})} \Big[ 1 - \log d(\underbrace{g(\boldsymbol{z}, \eta)}_{\boldsymbol{\hat{x}} \sim p_g}, \theta) \Big].$$
(22)

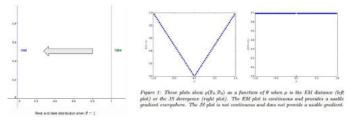
This is equivalent to minimize the Jensen-Shannon divergence:

$$\mathcal{D}_{JS}(p, p_g) = \mathcal{D}_{KL}(p \| (p + p_g)/2) + \mathcal{D}_{KL}(p_g \| (p + p_g)/2).$$
(23)

# But the J-S divergence is extremely difficult, if not impossible, to compute and optimize.

# GAN and its Caveats

**An Example:** distance between distributions in high-dim space with non-overlapping low-dim supports. (always the case in high-dim!)



Replace  $\mathcal{D}_{JS}$  with the *Earth-Mover* distance or *Wasserstein-1* distance:

$$W_1(p, p_g) = \inf_{\pi \in \Pi(p, p_g)} \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \pi} \big[ \| \boldsymbol{x} - \boldsymbol{y} \|_1 \big].$$
(24)

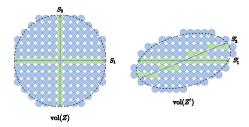
• Hard to compute  $\mathcal{D}_{JS}(p,p_g)$  or  $W_1(p,p_g)$  accurately and efficiently.

• Either  $\mathcal{D}_{JS}$  or  $W_1$  has no closed-form even between two Gaussians!

< ロ > < 同 > < 回 > < 回 >

### Rate Reduction as Distance between Subspace Gaussians

Rate reduction  $\Delta R = \log \#(\text{blue spheres})$  gives a **closed-form distance** between two (non-overlapping) subspace Gaussians  $S_1$  and  $S_2$ !



A good measure for the (LDR-like) features Z, but what about  $d(X, \hat{X})$ ?

$$X \xrightarrow{f(\boldsymbol{x},\theta)} Z \xrightarrow{g(\boldsymbol{z},\eta)} \hat{X}.$$
 (25)

Question: do we ever need to measure in the data x space?

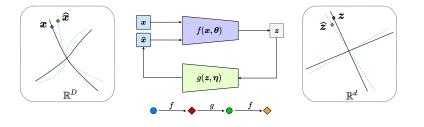
# A New Closed-Loop Formulation

**Goal:** Transcribe the data  $X \subset \cup_{i=1}^k \mathcal{M}_j$  onto an LDR  $Z \subset \cup_{i=1}^k \mathcal{S}_j$ :



Is it possible to measure everything internally in the feature space?

$$X \xrightarrow{f(\boldsymbol{x},\theta)} Z \xrightarrow{g(\boldsymbol{z},\eta)} \hat{X} \xrightarrow{f(\boldsymbol{x},\theta)} \hat{Z}.$$
 (27)



29 / 63

・ロト ・ 同ト ・ ヨト ・ ヨト

### Measure Data Difference through Their Features Measure difference in $X_j$ and $\hat{X}_j$ through their features $Z_j$ and $\hat{Z}_j$ :

$$X_j \xrightarrow{f(\boldsymbol{x},\theta)} Z_j \xrightarrow{g(\boldsymbol{z},\eta)} \hat{X}_j \xrightarrow{f(\boldsymbol{x},\theta)} \hat{Z}_j, \quad j = 1, \dots, k.$$
 (28)

with the rate reduction measuring the error:

$$\Delta R(\boldsymbol{Z}_j, \hat{\boldsymbol{Z}}_j) \doteq R(\boldsymbol{Z}_j \cup \hat{\boldsymbol{Z}}_j) - \frac{1}{2} (R(\boldsymbol{Z}_j) + R(\hat{\boldsymbol{Z}}_j)), \quad j = 1, \dots, k.$$
(29)

### Measure Data Difference through Their Features Measure difference in $X_j$ and $\hat{X}_j$ through their features $Z_j$ and $\hat{Z}_j$ :

$$X_j \xrightarrow{f(\boldsymbol{x},\theta)} Z_j \xrightarrow{g(\boldsymbol{z},\eta)} \hat{X}_j \xrightarrow{f(\boldsymbol{x},\theta)} \hat{Z}_j, \quad j = 1, \dots, k.$$
 (28)

with the rate reduction measuring the error:

$$\Delta R(\boldsymbol{Z}_j, \hat{\boldsymbol{Z}}_j) \doteq R(\boldsymbol{Z}_j \cup \hat{\boldsymbol{Z}}_j) - \frac{1}{2} (R(\boldsymbol{Z}_j) + R(\hat{\boldsymbol{Z}}_j)), \quad j = 1, \dots, k.$$
(29)

**Decoder/controller** g minimizes the difference between X and  $\hat{X}$ :

$$d(\boldsymbol{X}, \hat{\boldsymbol{X}}) \doteq \min_{\eta} \sum_{j=1}^{k} \Delta R(\boldsymbol{Z}_{j}, \hat{\boldsymbol{Z}}_{j}) = \min_{\eta} \sum_{j=1}^{k} \Delta R(\boldsymbol{Z}_{j}, f(g(\boldsymbol{Z}_{j}, \eta), \theta)).$$

### Measure Data Difference through Their Features Measure difference in $X_j$ and $\hat{X}_j$ through their features $Z_j$ and $\hat{Z}_j$ :

$$X_j \xrightarrow{f(\boldsymbol{x},\theta)} Z_j \xrightarrow{g(\boldsymbol{z},\eta)} \hat{X}_j \xrightarrow{f(\boldsymbol{x},\theta)} \hat{Z}_j, \quad j = 1, \dots, k.$$
 (28)

with the rate reduction measuring the error:

$$\Delta R(\boldsymbol{Z}_j, \hat{\boldsymbol{Z}}_j) \doteq R(\boldsymbol{Z}_j \cup \hat{\boldsymbol{Z}}_j) - \frac{1}{2} (R(\boldsymbol{Z}_j) + R(\hat{\boldsymbol{Z}}_j)), \quad j = 1, \dots, k.$$
(29)

**Decoder/controller** g minimizes the difference between X and  $\hat{X}$ :

$$d(\boldsymbol{X}, \hat{\boldsymbol{X}}) \doteq \min_{\eta} \sum_{j=1}^{k} \Delta R(\boldsymbol{Z}_{j}, \hat{\boldsymbol{Z}}_{j}) = \min_{\eta} \sum_{j=1}^{k} \Delta R(\boldsymbol{Z}_{j}, f(g(\boldsymbol{Z}_{j}, \eta), \theta)).$$

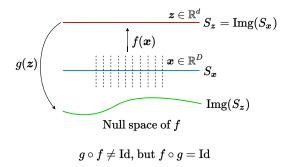
**Encoder/sensor** f amplifies any difference between X and  $\hat{X}$ :

$$d(\boldsymbol{X}, \hat{\boldsymbol{X}}) \doteq \max_{\theta} \sum_{j=1}^{k} \Delta R(\boldsymbol{Z}_{j}, \hat{\boldsymbol{Z}}_{j}) = \max_{\theta} \sum_{j=1}^{k} \Delta R(f(\boldsymbol{X}_{j}, \theta), f(\hat{\boldsymbol{X}}_{j}, \theta)).$$

## Dual Roles of the Encoder and Decoder

The encoder f needs to be a discriminative sensor that can discern and amplify any error between the distributions between X and  $\hat{X}$ .

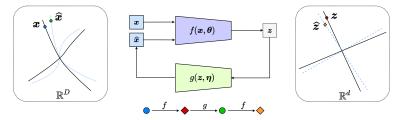
**Reason:** for a fixed encoder f, the decoder g can easily produce an ambiguous decoding such that the error between Z and  $\hat{Z}$  is zero!



31 / 63

### Dual Roles of the Encoder and Decoder

f is both an encoder and sensor; and g is both a decoder and controller. They form a closed-loop feedback control system:



A closed-loop notion of "self-consistency" between X and  $\hat{X}$  is given by a pursuit-evasion game between f as a "evader" and g as a "pursuer":

$$\mathcal{D}(\boldsymbol{X}, \hat{\boldsymbol{X}}) \doteq \min_{\eta} \max_{\theta} \sum_{j=1}^{k} \Delta R\Big(\underbrace{f(\boldsymbol{X}_{j}, \theta)}_{\boldsymbol{Z}_{j}(\theta)}, \underbrace{f(g(f(\boldsymbol{X}_{j}, \theta), \eta), \theta)}_{\hat{\boldsymbol{Z}}_{j}(\theta, \eta)}\Big).$$
(30)

### Overall Objective: Self-Consistency & Parsimony

The overall minimax game between the encoder f and decoder g:

- f maximizes the rate reduction of the features Z of the data X;
- g minimizes the rate reduction of the features  $\hat{Z}$  of the decoded  $\hat{X}$ .

A minimax program to learn a **multi-class LDR** for data  $X = \cup_{j=1}^k X_j$ :

$$\begin{split} \min_{\eta} \max_{\theta} \underbrace{\Delta R\big(f(\boldsymbol{X}, \theta)\big)}_{\text{Expansive encode}} + \underbrace{\Delta R\big(h(\boldsymbol{X}, \theta, \eta)\big)}_{\text{Compressive decode}} + \sum_{j=1}^{k} \underbrace{\Delta R\big(f(\boldsymbol{X}_{j}, \theta), h(\boldsymbol{X}_{j}, \theta, \eta)\big)}_{\text{Contrastive & Contractive}} \end{split}$$
with  $h(\boldsymbol{x}) \doteq f \circ g \circ f(\boldsymbol{x})$ , or equivalently
$$\min_{\eta} \max_{\theta} \Delta R\big(\boldsymbol{Z}(\theta)\big) + \Delta R\big(\hat{\boldsymbol{Z}}(\theta, \eta)\big) + \sum_{j=1}^{k} \Delta R\big(\boldsymbol{Z}_{j}(\theta), \hat{\boldsymbol{Z}}_{j}(\theta, \eta)\big). \end{split}$$

#### Overall Objective: Self-Consistency & Parsimony

The overall minimax game between the encoder f and decoder g:

- f maximizes the rate reduction of the features Z of all the data X;
- g minimizes the rate reduction of the features  $\hat{Z}$  of the decoded  $\hat{X}$ .

A minimax program to learn a **one-class LDR** for data X:

Binary: 
$$\min_{\eta} \max_{\theta} \underbrace{\Delta R(f(\boldsymbol{X}, \theta), h(\boldsymbol{X}, \theta, \eta))}_{\text{Contrastive & Contractive}}$$

or equivalently

$$\text{Binary:} \quad \min_{\eta} \max_{\theta} \Delta R\big( \boldsymbol{Z}(\theta), \hat{\boldsymbol{Z}}(\theta, \eta) \big).$$

4 1 1 4 1 1 1

#### Characteristics of the Overall Objective

$$\min_{\eta} \max_{\theta} \Delta R(\boldsymbol{Z}(\theta)) + \Delta R(\hat{\boldsymbol{Z}}(\theta,\eta)) + \sum_{j=1}^{k} \Delta R(\boldsymbol{Z}_{j}(\theta), \hat{\boldsymbol{Z}}_{j}(\theta,\eta)).$$

- Simplicity: all terms are closed-form rate reduction on features.
- Consistency: closed-loop encoding and decoding are all needed.
- Excplicit: distribution of learned features Z is not hidden (an LDR).
- No need of any direct explicit distance between X and  $\hat{X}$ .
- No need to specify a prior or a surrogate target distribution.
- No more approximations or bounds for (KL-, JS-, W-) "distances".
- No heuristics or regularizing terms.

#### Self-consistency and Parsimony are all you need to model X?

э

< □ > < □ > < □ > < □ > < □ > < □ >

## Empirical Verification on Visual Data

Experimental Setup:

- **Datasets:** MNIST, CIFAR10, STL-10, CelebA faces, LSUN bedroom, ImageNet
- Network architectures: basic DCGAN & ResNet (not customized).
- Feature space: the same 128-dim regardless of data resolution or size
- Quantization precision: the same  $\epsilon^2 = 0.5$ .
- **Optimizer:** Adam with the same hyperparameters  $\beta_1 = 0, \beta_2 = 0.9$ .
- Linear rate: the same initial 0.00015 with linear decay.

#### No other regularization, heuristics, or engineering tricks.

э

イロト イヨト イヨト ・

#### Empirical Verification: Fair Comparison to Baselines

| Method   |                 | GAN   | GAN (LDA-Binary) | VAE-GAN | LDA-Binary | LDA-Multi |
|----------|-----------------|-------|------------------|---------|------------|-----------|
| MNIST    | $IS\uparrow$    | 2.08  | 1.95             | 2.21    | 2.02       | 2.07      |
|          | $FID\downarrow$ | 24.78 | 20.15            | 33.65   | 16.43      | 16.47     |
| CIFAR-10 | IS ↑            | 7.32  | 7.23             | 7.11    | 8.11       | 7.13      |
|          | $FID\downarrow$ | 26.06 | 22.16            | 43.25   | 19.63      | 23.91     |

Table: Quantitative comparison on MNIST and CIFAR-10. Average Inception scores (IS) and FID scores.  $\uparrow$  means higher is better.  $\downarrow$  means lower is better.



Figure: Qualitative comparison on MNIST, CIFAR-10 and ImageNet.

< □ > < □ > < □ > < □ > < □ > < □ >

#### Empirical Verification on Visual Data

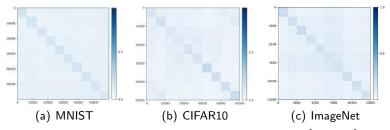


Figure: Visualizing the alignment between Z and  $\hat{Z}$ :  $|Z^{\top}\hat{Z}|$ .



#### Empirical Verification: Comparison on MNIST



(a) Original X

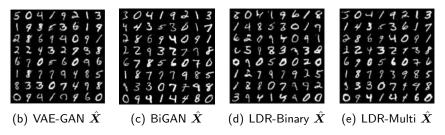


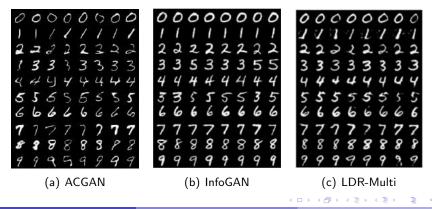
Figure: Reconstruction results of different methods with the input data.

∃ >

## Empirical Verification: MNIST PCAs

The feature z in each of the k principal subspaces can be modeld as a degenerate Gaussian from the PCA  $Z_j = V_j \Sigma_j U_j^T$ :

$$\boldsymbol{z}_{j} \sim \bar{\boldsymbol{z}}_{j} + \sum_{l=1}^{r_{j}} n_{l}^{j} \sigma_{j}^{l} \boldsymbol{v}_{j}^{l}, \text{ where } n_{l}^{j} \sim \mathcal{N}(0,1), j = 1, \dots, k.$$
 (31)



#### Empirical Verification: MNIST PCAs

The feature z in each of the k principal subspaces can be modeld as a degenerate Gaussian from the PCA  $Z_j = V_j \Sigma_j U_j^T$ :

$$\boldsymbol{z}_j \sim \bar{\boldsymbol{z}}_j + \sum_{l=1}^{r_j} n_l^j \sigma_j^l \boldsymbol{v}_j^l, \quad \text{where} \quad n_l^j \sim \mathcal{N}(0,1), \ j = 1, \dots, k.$$
 (32)

#### Nearest subspace classification based on the computed PCAs.

Table 3: Classification accuracy on MNIST, comparing to classifier based VAE methods (Parmar et al., 2021). Most of those VAE-based methods require auxiliary classifiers to boost classification performance.

| Method | VAE    | Factor VAE | Guide-VAE | DC-VAE | LDR-Binary | LDR-Multi |
|--------|--------|------------|-----------|--------|------------|-----------|
| MNIST  | 97.12% | 93.65%     | 98.51%    | 98.71% | 89.12%     | 98.30%    |

< ロ > < 同 > < 回 > < 回 > < 回 > <

#### Empirical Verification: Interpolation between Samples

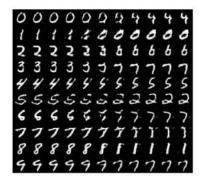
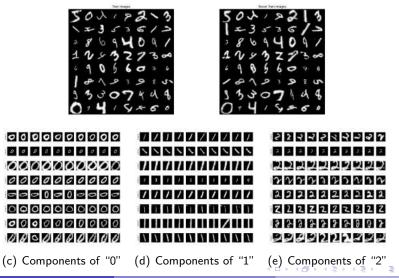


Figure: Images generated from interpolating between samples in different classes.

## Empirical Verification: Transformed MNIST

Original data X and their decoded version  $\hat{X}$  on transformed MNIST.



Ma (EECS Department, UC Berkeley) Data

Data Transcription & Rate Reduction

# Empirical Verification: "Principal Images" of CIFAR10



∃ →

# Empirical Verification: "Principal Images" of CIFAR10



Ma (EECS Department, UC Berkeley)

< 行

∃ →

45 / 63

#### Empirical Verification: "Principal Images" of CIFAR10



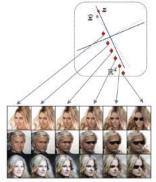
Figure: Reconstructed images  $\hat{X}$  from features Z close to the principal components learned for each of the 10 classes of CIFAR-10.

Different classes are disentangled as principal subspaces. Visual attributes are disentangled as principal components.

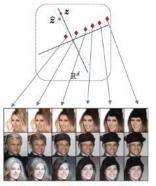
46 / 63

#### Empirical Verification: Principal Components of CelebA

Figure: Generated images by sampling along the 9-th and 23-th principal components of the learned features Z, for the CelebA dataset.



Generated along one PC



Generated along another PC

#### Visual attributes are disentangled as principal components.

< □ > < □ > < □ > < □ > < □ > < □ >

# Empirical Verification: CelebA Randomly Generated $\hat{X}$



1 ∃ →

#### Empirical Verification: CelebA Input X



(a) Original X

Figure: Visualizing the original x and corresponding decoded  $\hat{x}$  results on Celeb-A dataset. The LDR model is trained from LDR-Binary.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Empirical Verification: CelebA Decoded $\hat{X}$



(a) Decoded  $\hat{X}$ 

Figure: Visualizing the original x and corresponding decoded  $\hat{x}$  results on Celeb-A dataset. The LDR model is trained from LDR-Binary.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

#### Empirical Verification: LSUN Bedroom Input X



(a) Original X

Figure: Visualizing the original x and corresponding decoded  $\hat{x}$  results on LSUN-bedroom dataset. The LDR model is trained from LDR-Binary.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Empirical Verification: LSUN Bedroom Decoded X



(a) Decoded  $\hat{X}$ 

Figure: Visualizing the original x and corresponding decoded  $\hat{x}$  results on LSUN-bedroom dataset. The LDR model is trained from LDR-Binary.

#### Empirical Verification: ImageNet 10-Class Input X



#### (a) Original X

Ma (EECS Department, UC Berkeley)

Data Transcription & Rate Reduction

January 28, 2022

- ∢ ⊒ →

э

# Empirical Verification: ImageNet 10-Class Decoded $\hat{X}$



#### (b) Decoded $\hat{X}$

Ma (EECS Department, UC Berkeley)

Data Transcription & Rate Reduction

January 28, 2022

< ∃⇒

э

→ ∃ →

< 1<sup>™</sup> >

#### Empirical Verification: ImageNet Feature Similarity

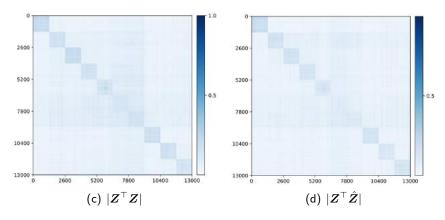


Figure: Visualizing feature alignment: (a) among features  $|Z^{\top}Z|$ , (b) between features and decoded features  $|Z^{\top}\hat{Z}|$ . These results obtained after 200,000 iterations.

#### Empirical Verification: Quantitative

#### Table: Comparison on CIFAR-10, STL-10, and ImageNet.

| Method                | CIFAR-10 |       | STL-10 |      | ImageNet |         |
|-----------------------|----------|-------|--------|------|----------|---------|
|                       | IS↑      | FID↓  | IS↑    | FID↓ | IS↑      | FID↓    |
| GAN based methods     |          |       |        |      |          |         |
| DCGAN                 | 6.6      | -     | 7.8    | -    | -        | -       |
| SNGAN                 | 7.4      | 29.3  | 9.1    | 40.1 | -        | 48.73   |
| CSGAN                 | 8.1      | 19.6  | -      | -    | -        | -       |
| LOGAN                 | 8.7      | 17.7  | -      | -    | -        | -       |
| VAE/GAN based methods |          |       |        |      |          |         |
| VAE                   | 3.8      | 115.8 | -      | -    | -        | -       |
| VAE/GAN               | 7.4      | 39.8  | -      | -    | -        | -       |
| NVAE                  | -        | 50.8  | -      | -    | -        | -       |
| DC-VAE                | 8.2      | 17.9  | 8.1    | 41.9 | -        | -       |
| LDR-Binary (ours)     | 8.1      | 19.6  | 8.4    | 38.6 | 7.74     | 46.95   |
| LDR-Multi (ours)      | 7.1      | 23.9  | 7.7    | 45.7 | 6.44     | 55.51   |
|                       |          |       |        |      |          | 1 E 1 E |

Ma (EECS Department, UC Berkeley) Data Transcription & Rate Reduction

## Empirical Verification: Ablation Study

Training the ImageNet with networks of different width.

|         | channel $\#=1024$ | $channel\#{=}512$ | channel $\#=256$ |
|---------|-------------------|-------------------|------------------|
| BS=1800 | success           | success           | success          |
| BS=1600 | success           | success           | success          |
| BS=1024 | failure           | success           | success          |
| BS=800  | failure           | failure           | success          |
| BS=400  | failure           | failure           | failure          |

Table: Ablation study on ImageNet about tradeoff between batch size (BS) and network width (channel #).

#### No mode collapse!

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Empirical Verification: Other Ablation Studies

$$\min_{\eta} \max_{\theta} \Delta R(\boldsymbol{Z}(\theta)) + \Delta R(\hat{\boldsymbol{Z}}(\theta,\eta)) + \sum_{j=1}^{k} \Delta R(\boldsymbol{Z}_{j}(\theta), \hat{\boldsymbol{Z}}_{j}(\theta,\eta)).$$

.

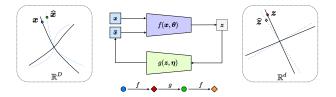
Other ablations studies:

- the importance of the closed loop.
- the importance of rate reduction versus cross entropy.
- the three terms in the objective function.
- sensitivity to spectral normalization.
- choices in feature dimension or channel number.

• ...

see details in the paper https://arxiv.org/abs/2111.06636

#### Conclusions: Closed-Loop Transcription to an LDR



- **universality:** embedding real-world data to a simple and explicit linear discriminative representation.
- **parsimony:** a good tradeoff in rate reduction via a minimax game between an encoder and a decoder.
- **feedback:** a closed-loop feedback control system between a sensor and a controller.
- **self-consistency:** no need of any surrogate distance in the external data space.

59 / 63

- 4 回 ト - 4 三 ト

# **Open Mathematical Problems**

For the closed-loop minimax rate reduction program:

$$\min_{\eta} \max_{\theta} \Delta R(\boldsymbol{Z}(\theta)) + \Delta R(\hat{\boldsymbol{Z}}(\theta,\eta)) + \sum_{j=1}^{k} \Delta R(\boldsymbol{Z}_{j}(\theta), \hat{\boldsymbol{Z}}_{j}(\theta,\eta)).$$

- optimality: characterization of the equilibrium points?
- convergence of the closed-loop control problem (infinite-dim)?
- linearization of distribution supports (plastic manifold learning)?
- optimal density of the distributions (*Brascamp-Lieb* inequalities)?
- guarantees for approximate sample-wise auto-encoding?
- correct model selection (no under- or over-fitting)?

・ 何 ト ・ ヨ ト ・ ヨ ト

# **Open Directions: Extensions and Connections**

- How to **scale up** to hundreds and thousands of classes? (variational forms for rate reduction...)
- Internal computational mechanism for **memory** forming (in Nature)? (incremental learning without catastrophic forgetting...)
- Better feedback for generative quality and discriminative property?
- Whitebox architectures for closed-loop transcription (ReduNet like)?
- Closed-loop transcription to **other types of low-dim structures**? (dynamical, causal, logical, symbolical, graphical...)

#### The principles of parsimony and self-consistency shall always rule!

イロト イヨト イヨト ・

#### References: Learning via Rate Reduction and Transcription

- Closed-Loop Data Transcription to an LDR via Minimaxing Rate Reduction https://arxiv.org/abs/2111.06636 (under submission)
- ReduNet: A Whitebox Deep Network from Rate Reduction (JMLR'22): https://arxiv.org/abs/2105.10446
- 3 Representation via Maximal Coding Rate Reduction (NeurIPS'20): https://arxiv.org/abs/2006.08558
- Classification via Minimal Incremental Coding Length (NIPS 2007): http://people.eecs.berkeley.edu/~yima/psfile/MICL\_SJIS.pdf
- Clustering via Lossy Coding and Compression (TPAMI 2007): http://people.eecs.berkeley.edu/~yima/psfile/Ma-PAMI07.pdf

#### Parsimony and self-consistency are all you need to learn a compact and simple memory for real-world data.

Thank you! Questions, please?

"Learners need endless feedback more than they need endless teaching."

- Grant Wiggins

