Qualifying Examination Basic Mathematics Fall 2017

(1) Calculate the inverse of the matrix $\mathbf{A}=\left(\begin{array}{lll}2 & 3 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 3\end{array}\right)$ (2 pts.)

What are the eigenvalues of \mathbf{A} ? (3 pts.) Find one of the normalized eigenvectors. (1 pt.) Hint: one eigenvalue is 6 .
(2) Solve in terms of an infinite series the differential equation
$x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x y=0$, subject to the boundary condition $y(0)=1$ (7 pts .)
(3) What are the equations of the two straight lines that are tangent to the circle $(x-1)^{2}+(y-2)^{2}=4$ at the points on the circle where $x=2$. (4 pts.) What is the angle between these two straight lines? (3 pts.)

Solutions

(1) Inverse is $\left(\begin{array}{ccc}1 / 18 & 7 / 18 & -5 / 18 \\ 7 / 18 & -5 / 18 & 1 / 18 \\ -5 / 18 & 1 / 18 & 7 / 18\end{array}\right)$

The characteristic is equation $\lambda^{3}-6 \lambda^{2}-3 \lambda+18=0$. Given that one eigenvalue is 6 this can be factored as $(\lambda-6)\left(\lambda^{2}-3\right)=0$. The other two eigenvalues are $\pm \sqrt{3}$. For the eigenvalue of 6 the normalized eigenvector is $\left(\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right)$
(2) The method of Frobenius suggest a solution of the form $y=e^{b}\left(a_{0}+a_{1} x+a_{2} x+a_{3} x^{2}+a_{4} x^{3}+\ldots\right)$. If this is substituted in the differential equation it is easy to find that $\mathrm{b}=0$. Substituting $y=\left(a_{0}+a_{1} x+a_{2} x+a_{3} x^{2}+a_{4} x^{3}+\ldots\right)$ in the equation and ensuring that the coefficient of $x^{n}=0$ gives the solution as
$y=1-\frac{1}{2^{2}} x^{2}+\frac{1}{2^{2} \times 4^{2}} x^{4}-\frac{1}{2^{2} \times 4^{2} \times 6^{2}} x^{6}+\ldots$.
(3) The two tangent points are $(2,2+\sqrt{3}),(2,2-\sqrt{3})$. The unit tangent vector at the first point is $\left(\frac{\mathbf{i}-\frac{\mathbf{j}}{\sqrt{3}}}{\sqrt{\frac{4}{3}}}\right)$. The unit vector at the second point is $\left(\frac{\mathbf{i}+\frac{\mathbf{j}}{\sqrt{3}}}{\sqrt{\frac{4}{3}}}\right)$. These are found by setting the dot product of radius vector and tangent vector $=0$. The dot product of these two unit vectors give the cosine of the angle between them. This gives $\theta=\arccos (1 / 2)=60^{\circ}$.

The slopes of the two tangent lines are $\frac{-1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$. The first tangent equation is $y=\frac{-x}{\sqrt{3}}+\frac{5+2 \sqrt{3}}{\sqrt{3}}$. The second tangent equation is $y=\frac{x}{\sqrt{3}}+\frac{2 \sqrt{3}-5}{\sqrt{3}}$

