Circuits Fall 2017

\#1. (6 points) For the following circuit assume that the op-amp is ideal (linear, zero input currents and zero input difference voltage $=\mathrm{vd}=0$).

a) (3 points) Find the transfer function vo(s)/vi(s) when $\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R}$ and give its zeros and poles.
b (3 points) Discuss stability of the circuit, including conditions and nature.
\#2 (7 points) The following circuit is described by the equations
$\left[\begin{array}{ll}\mathrm{C} & 0 \\ 0 & \mathrm{~L}\end{array}\right] \frac{d \mathrm{x}}{d \mathrm{t}}=\left[\begin{array}{ll}0 & -1 \\ 1 & -\mathrm{R}\end{array}\right] \mathrm{x}+\left[\begin{array}{l}1 \\ 0\end{array}\right] \operatorname{Iin}$
$\mathrm{v}_{0}=\left[\begin{array}{ll}0 & R\end{array}\right] \mathrm{x}$

a) (2 points) Give x in terms of voltage and current variables labelled in the circuit.
b) (3 points) Give the transfer function vo/lin(s).
c) (2 points) For C , L, R all positive, discuss if this is a low-pass, high-pass or band-pass circuit.
\#3) (7 points) The following is a sectioned circuit diagram for a feedback circuit consisting of a differential pair, an all-pass circuit, and a high-pass feedback circuit.
The differential pair is described by loutDP/vd=Gm, the all-pass circuit is described by vout $A P / \operatorname{lin} A P(s)=[s-a] /[s+a]$, and the high-pass feedback by voutHP/vinHP(s) = Cs; all of $C, G m$, and a are positive.

a) (3 points) Find the transfer function Vout/Vin(s).
b) (2 poinra) Show that there is a Gm for which this will be a sinusoidal oscillator; give the Gm and oscillation frequency, fosc.
c) (2 points) If the output of the high-pass section were to become shorted, discuss how that will affect a measurement of Vout in the laboratory.

Civuit Frall 2017 solution
相, a)

$$
\begin{aligned}
& v_{R_{2}}=\frac{R_{2}}{k_{x}+R_{3}} v_{0}=\frac{1}{2} v_{0} \quad, v_{R_{1}}=R_{1} i=v_{i}-v_{d}-v_{2}=v_{i}-\frac{1}{2} v_{0} \Rightarrow \dot{c}=\frac{1}{R}\left(v_{i}-\frac{1}{2} v_{0}\right) \\
& \hat{i}_{c}=\dot{c}=\pi c v_{d}=\pi c\left[v_{d}+v_{z}-v_{0}\right]=\alpha c\left[\frac{1}{2} v_{0}-v_{0}\right]=-\frac{1}{2} x c v_{0}=\frac{1}{R}\left(v_{L}-\frac{1}{2} v_{0}\right) \\
& \Rightarrow-\frac{k C}{2} \pi v_{0}+\frac{1}{2} v_{b}=v_{E} \Rightarrow \frac{v_{0}}{v_{c}}=\frac{1}{\left(-\frac{R C}{2} A+\frac{1}{2}\right)}=\frac{2}{-A C R+1}=\frac{-2 / K C}{2-1 / R C}=\frac{v_{0}}{v_{s}}
\end{aligned}
$$

\Rightarrow azese@ ∞, arob@ap=1/Rc
b) If $R>0, C>0$ the ecrecition unveleb having a RHP pole giving inapoulse sexpersee $-\frac{2}{R_{C}} e^{t / R E_{1}(t)}$
of $k=0$, the inprut is fod to (henlimitarken $k \rightarrow 0) 1 / 2 v_{0} \Rightarrow v_{0}=2 v_{i} \Rightarrow$ alable

H2. Surnming curseuth of the top of $c \Rightarrow i_{\text {in }}^{\prime}=c \frac{d v_{L}}{d T_{T}}+i_{L} \Rightarrow c \frac{d v_{c}}{v_{i}}=-i_{L}+i_{\text {in }}$ $\Rightarrow 1$ al 有 $\Rightarrow x_{1}=v_{c}$

$$
\Rightarrow \text { ind } y \Rightarrow x_{2}=i
$$

a) $\Rightarrow x=\left[\begin{array}{l}v_{c} \\ i_{k}\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow X(a)=\left\{\left[\begin{array}{ll}
R c & 0 \\
0 & a r
\end{array}\right]-\left[\begin{array}{cc}
0 & -1 \\
1 & -R
\end{array}\right]\right\}^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{\text {min }}=\left[\begin{array}{ll}
\pi C & 1 \\
-1 & \alpha L+R
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{m a}=\frac{1}{A^{2} L C+R R C+1} \cdot\left[\begin{array}{l}
A L+R \\
+1
\end{array}\right]_{m i n} \\
& V_{0}=\left[\begin{array}{ll}
0 & R
\end{array}\right]\left[\begin{array}{c}
\alpha L+R \\
+1
\end{array}\right] \cdot \frac{1}{L C A^{2}+R C A+1} I_{m} \Rightarrow \frac{V_{0}}{I_{m}}=\frac{R}{L C A^{2}+R C A+1}
\end{aligned}
$$

a) Shis is a bow peas cirevit if R, L, C all >0 ax $\left.\frac{v_{0}}{I_{i n}}\right|_{s=j \omega \rightarrow \infty}=0$
\#3. a) $i_{\text {Mutop }}=-G_{\text {mi }}\left[v_{\text {in }}-C_{Q} v_{\text {out }}\right]=i_{\text {mi }} A P=\left(\frac{A+a}{A-a}\right) v_{\text {out }} \Rightarrow G_{\text {min }} v_{\text {mi }}=\left[G_{m} c_{R}+\left(\frac{A+a}{A-a}\right)\right] v_{\text {out }}$

$$
\Rightarrow \frac{v_{\text {oux }}}{v_{\text {min }}}=\frac{G_{m}}{G_{m} c_{a}+\left(\frac{a+a}{k-a}\right)}=\frac{G_{m m}(a-a)}{G_{m} c s^{2}+\left(1-G_{m} c a\right) s+a}
$$

b) For $G_{m m} c a=1$ which is $G_{m m} c=1 / a, \frac{v_{\text {out }}}{v_{\text {mi }}}=\frac{G_{m m}(x-a)}{G_{m m}\left(a^{2}+a\right.}=\frac{\frac{1}{c}(1-a)}{a^{2}+\frac{a}{G_{m m}} c}=\frac{\frac{1}{c}(a-a)}{a^{2}+a^{2}}$
$\Rightarrow G_{m}=1 / c a \Rightarrow$ volem; wachis
$@ \pm \sqrt{-a^{2}}= \pm j a$, worcellation $=a=1 / G_{m} c, f_{\text {are }}=\frac{w_{m p}}{2 \pi}=a / 2 \pi$
c) If:high-purs output $=$ shost \Rightarrow mojeedbeck $\Rightarrow v_{d}=v_{\text {in }}$ sielling odcillation

