Linear Systems and Signals - Ph.D. Qualifying Exam, August 2017

Part 1 (6 pts.)

Sequences $x[n]$ and $\tilde{x}[n]$ both have finite duration, with nonzero samples as shown below.

(1a) (3 pts.) Give an example of a sequence $v[n]$ consisting entirely of nonzero samples (i.e., $v[n] \neq 0$ for all n) such that the convolution of $v[n]$ and $x[n]$ (left graph) is the all-zeros sequence:

$$
(\forall n \in \mathbb{Z}) \quad(v * x)[n]=0
$$

(1b) (3 pts.) Suppose the response of a linear time-invariant system to the input sequence $x[n]$ is the (output) sequence $y[n]$. What is the response $\tilde{y}[n]$ of the same system to the input sequence $\tilde{x}[n]$ (right graph)? Express $\tilde{y}[\cdot]$ in terms of $y[\cdot]$.

Part 2 (7 pts.)

Consider the periodic signal $x(t)$ of period $T_{0}=6 \mathrm{sec}$, defined (over the time interval $[-3,3]$) by

$$
x(t)= \begin{cases}1, & |t| \leq 1 \\ 0, & 1<|t| \leq 3\end{cases}
$$

(2a) (3 pts.) Sketch the general form of the Fourier transform $X(j \omega)$, where ω is in $\mathrm{rad} / \mathrm{sec}$. The horizontal (ω) axis should be marked in detail. You need not provide values for the vertical coordinates.
(2b) (4 pts.) If $x(t)$ is the input to a linear time-invariant system with frequency response

$$
H(j \omega)= \begin{cases}1, & |\omega| \leq \pi / 2 \\ 0, & |\omega|>\pi / 2\end{cases}
$$

determine the system's output $y(t)$.

Part 3 (7 pts.)

Consider the causal linear time-invariant system with transfer function

$$
H(s)=\frac{s-1}{s^{2}+b s+3}
$$

where b is real-valued.
(3a) (4 pts.) For which, if any, values of b does the system's impulse response $h(t)$ have both of the following properties:

- it is bounded (over all time t); and
- there are infinitely many values of t greater than zero for which $h(t)=0$.
(3b) ($\mathbf{3} \mathbf{~ p t s .) ~ I f ~} b=1$, determine the response (output) $y(t)$ of the system to the input signal given by $x(t)=\cos t$, for all $t \in \mathbb{R}$. Your answer should be real-valued.
Part 1
I inear_systems_sol

(1a)

If $z[$.$] is the convolution of x[$.$] and v[$.$] , then$
$z[n]=v[n]+\ldots+v[n-6]$
This can be made zero for all n by choosing v[.]
periodic with period 7 samples, and sum = over one period, e.g.,
$v[0$ through 6] $=(1,2,3,4,5,6,-21)$
(1b)
TUsíng ' instead of \sim)

$$
x^{\prime}[n]=x[n]-x[n-4]+x[n-7]
$$

By I inearity and time invariance,
$y^{\prime}[n]=y[n]-y[n-4]+y[n-7]$

Part 2

Period TO = $6 \mathrm{sec} \Rightarrow$ Fundamental wo $=2 * \mathrm{pi} / 6=\mathrm{pi} / 3 \mathrm{rad} / \mathrm{sec}$ $x(t)=$ sum of $X[k] * \exp (j * k * w 0 * t)$ over all integers k (i.e., X[k] is the kth Fourier series coefficient)
$\bar{X}\left(j^{*}{ }^{*} w\right)=$ sum of $2 * p i * X[k] * d e l t a(w-k * w 0)$ over all k Thus the graph consists exclusively of impulses at positions

$$
w=k * W 0=k *(p i / 3)
$$

(2b)
$\bar{H}\left(j^{*} w\right)$ is an ideal lowpass filter characteristic with cutoff frequency wc $=$ pi/2 and gain $=1$. Harmonics $k=-1$, 0 and +1 are within the passband $|w|<|w c|$.

```
X[0] = (1/6)*(area under x(.) over [-3,3]) = 1/3
X[1] = (1/6)*(integral of exp(-j*pi*t) over [-3,3])
    = sin(pi/3)/pi=sqrt(3)/(2*pi)
```

Thus $y(t)=1 / 3+(s q r t(3) / p i) * \cos (p i * t / 3)$.

```
Part 3
```

|inear_systems_sol
(3a)

$h(t)=\left[C 1 * \exp \left(a 1^{*} t\right)+C 2 * \exp \left(a 2^{*} t\right)\right] * u(t)$
where al and a2 are the poles (roots of the quadratic
denominator of $\mathrm{H}(\mathrm{s})$).
h(.) is bounded iff the real parts of al and a2 are both $=<0$;
and it has infinitely many zerocrossings in positive time
iff the imaginary parts of al and a2 are nonzero. Since
$a 1=\left(-b+\operatorname{sqrt}\left(b^{\wedge} 2-12\right)\right) / 2,\left(-b-\operatorname{sqrt}\left(b^{\wedge} 2-12\right)\right) / 2$,
the conditions are met iff
$b>=0$ and $b^{\wedge} 2-12<0$, i.e., b is in [0, 2*sqrt(3))
(3b)

If $x(t)=\cos (t)$ for all t, then
$y(t)=A^{*} \cos (t+q)$,
where $A * \exp \left(j^{*} q\right)=H\left(j^{*} w\right)$ at $w=1$. Since
$H(j * 1)=(j-1) /(-1+j+3)=-(1 / 5)+j *(3 / 5)$
$=(\operatorname{sqrt}(10) / 5) * \exp (j *(-\arctan (3)+p i))$
it follows that
$y(t)=(\operatorname{sqrt}(10) / 5) * \cos (t-\arctan (3)+\operatorname{ii})$
$(\mathrm{al} \mathrm{s} 0)=-(1 / 5) * \cos (t)-(3 / 5) * \sin (t)$

