PROBABILITY - Ph.D. Qualifying Exam Spring 2017

Part 1: Consider that two random variables X and Y are uniformly distributed in the set \mathbb{A} depicted in Figure 1.
A) (2 pt) Determine $f_{X Y}$, the joint PDF (probability density function) of X and Y.
B) (2 pt) Determine f_{Y}, the PDF of Y.
C) $(\mathbf{3} \mathbf{p t})$ Compute the mean and variance of Y.

Figure 1: The joint PDF $f_{X, Y}$ is uniformly distributed in \mathbb{A} and is 0 outside of \mathbb{A}.

Solution:

Part A: The joint $P D F$ is 0.5 inside \mathbb{A} and zero outside.
Part B: $f_{Y}(y)=0.5 *(2-y)$ for $y \in[0,2]$ and is zero outside.
Part C: Mean is $2 / 3, E\left[Y^{2}\right]=2 / 3$, variance is $2 / 3-(2 / 3)^{2}=2 / 9$

Part 2: Let X_{1} and X_{2} be independent random variables exponentially distributed with expected value 1. Compute the CDF (cumulative distribution function) and the PDF (Probability density function) for the following random variables:
A) (3 pts) $Z=\max \left\{X_{1}, X_{2}\right\}$
B) $\mathbf{(3} \mathbf{p t s}) Z=\frac{X_{1}}{X_{2}+1}$

Solution
Part A: The CDF of Z is

$$
F_{Z}(z)= \begin{cases}\left(1-e^{-z}\right)^{2} & z \geq 0 \\ 0 & z<0\end{cases}
$$

and PDF is

$$
f_{Z}(z)= \begin{cases}2 e^{-z}\left(1-e^{-z}\right) & z \geq 0 \\ 0 & z<0\end{cases}
$$

Part B: The CDF is

$$
F_{Z}(z)= \begin{cases}1-\frac{e^{-z}}{z+1} & z \geq 0 \\ 0 & z<0\end{cases}
$$

and the PDF is

$$
f_{Z}(z)= \begin{cases}\frac{z+2}{(z+1)^{2}} e^{-z} & z \geq 0 \\ 0 & z<0\end{cases}
$$

Part 3: A transmission system has three components: (1) an encoder(transmitter), (2) a channel and (3) a decoder(receiver). There are two possible symbols $\left\{M_{1}, M_{2}\right\}$, out of which one is selected randomly. Each symbol is equally likely to be selected. The encoder uses a codebook that assigns to each symbol a string of N bits (we assume N is odd). To M_{1} it assigns a bit string of all zeroes and to M_{2} it assigns a bit string of all ones. The channel transmits a bit string from the encoder to the decoder, and in the process it will flip each bit (independently) with probability $p=0.25$. The decoder will use the received bit string to attempt to resolve which symbol was selected. Its output is \hat{M}, which is M_{1} if the received bit string has more zeroes than ones, and otherwise it declares M_{2}.
A) (4%) Calculate the exact probability of error (i.e., \hat{M} is not the selected symbol) for $N=5$.
B) (3%) What would be the probability of error as N tends to infinity? (Give a precise and short proof of your answer)

Solution:

Part A) Using Binomial $P($ Error $)=\frac{106}{1024}$
Part B) Use Chebyshev's inequality to show that it tends to zero.

