\#1. (7 points)

a) For the above circuit find the input admittance, yin (s), seen between nodes 1 and 2. Present the results as a polynomial numerator over polynomial denominator.
b) Give the conditions for this circuit to become a sinusoidal oscillator when there is a short circuit between nodes 1 and 2 .
\#. (6 points)

In the above circuit the op-amp has no current into its $+\&$ - leads and has the open circuit complex frequency gain (for which K and σ are positive numbers)

$$
\frac{V_{o}}{V_{d}}(s)=\frac{K}{s+\sigma}
$$

a) Give the circuit gain

$$
\frac{V_{o}}{V_{i}}(\mathrm{~s})
$$

b) What type of filter is this?
\#3. (7 points)
For the following diode circuit assume the diode, Dv, is described by the voltage V controlled by the current I via the cubic law:

$$
\mathrm{V}=\mathrm{V}_{\mathrm{d}}+\mathrm{K}_{\mathrm{d}}\left[\mathrm{I}^{3}-10^{-6} \mathrm{I}\right] \quad \mathrm{V}_{\mathrm{d}}=1 \mathrm{~V}, \mathrm{~K}_{\mathrm{d}}=6 \times 10^{8} \mathrm{~V} / \mathrm{A}^{3}
$$

In the circuit $C=20 n F d . I_{B}=2 m A$ is a bias current and I_{in} is a small signal current.

a) Sketch the diode V vs. I curve for $-2 m A<I<+2 m A$ giving the local maxima and minima values of V .
b) Add a load line passing through the point $\mathrm{V}=0$ at $\mathrm{I}=\mathrm{I}_{\mathrm{B}}$, the bias current point of I_{B} $=2 \mathrm{~mA}$, as well as the Q point, $\mathrm{V}=\mathrm{V}_{\mathrm{Q}}$ at $\mathrm{I}=\mathrm{I}_{\mathrm{Q}}=0$.
c) Find the value of the load resistance, R_{L}, to give this load line.
d) Find the small signal diode resistance r_{d} at the Q point.
e) Give the small signal differential equation for $\mathrm{V}_{\text {out }}(\mathrm{t})$ with $\mathrm{I}_{\text {in }}(\mathrm{t})$ as forcing function.
f) Give the small signal transfer function. $\mathrm{T}(\mathrm{s})=\frac{\mathrm{V}_{\text {out }}}{I_{\text {in }}}(\mathrm{s})$

Aolution - Ceisuit 52017

If node 1 is ahosted to ruode $2, r=0 \Rightarrow I \neq 0$ if y in $(x) \Rightarrow \infty$

$$
\begin{aligned}
& \text { If mode } 1 \text { in ahosted to } h\left(\frac{R}{R_{c}}+1\right) a+1=0 ; \text { Fid Remesocdal } D(x)=a x^{2}+b \\
& D(x)=R h C a^{2}+h
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow(A)=R L C A^{2}+h\left(\frac{R}{R_{C}}+1\right) R C\left(R^{2}+\frac{R_{1}}{R_{L C}}\right)=0 \text { with } \frac{1}{R_{L C}}>0 \Rightarrow \frac{R}{R_{L}}=-1 \Rightarrow R_{C}=-R<0
\end{aligned}
$$

\#2.

$$
\begin{aligned}
& \Rightarrow v_{c^{\prime}}=R_{1} i-v_{b} \Rightarrow c^{\prime}=G_{1}\left(v_{c^{\prime}}+v_{d}\right), G_{1}=1 / R_{1} \\
&-v_{d}=R_{2} i+v_{0} \Rightarrow-v_{d}=R_{2} G_{1}\left(v_{c}+v_{d}\right)+v_{0} \\
& \Rightarrow-\left(1+R_{2} G_{1}\right) v_{d}=R_{2} G_{1} v_{1}+v_{0}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow-\left(1+R_{2} G\right) \frac{\left(2+\sigma_{0}\right)}{k} V_{0}=R_{2} G_{1} v_{1^{\prime}}+v_{0} & \Rightarrow\left[-\left(1+R_{2} G_{1}\left(1+\sigma_{0}\right)-1\right] v_{0}=R_{2} G_{1} v_{1}\right. \\
-R_{2} G_{1} k & =-\left[\left(R_{2} G_{1} k\right) /\left(1+R_{2} G_{1}\right)\right]
\end{aligned}
$$

a) $\Rightarrow \frac{v_{0}}{v_{i}^{\prime}}(A)=\frac{-R_{2} G_{1} K}{\left[\left(1+R_{2} G_{1}\right)\left(2+\sigma_{0}\right)+K\right]}=\frac{-\left[\left(R_{2} G_{1} K\right) /\left(1+R_{2} G_{1}\right)\right]}{A+\left(G_{0}+\frac{K}{1+R_{2} G_{1}}\right)}$
b) Ojins is a low paser filtes an $\frac{v_{0}}{v_{c}} \rightarrow 0$ movotoriceolly as $a \rightarrow \infty$
\#3. @I $= \pm 10^{-3}, V V_{d}=1$, @ $I=-2 \times 10^{-3}, V=1-6 \times 10^{8}\left(8 \times 10^{-9}-2 \times 10^{-9}\right)=1-3.6=-2.6$

$$
\begin{aligned}
& 1 / V_{2 I}=K_{d}\left(3 I 2-10^{-6}\right)=0 \Rightarrow I= \pm \frac{1}{\sqrt{3}} m A \Rightarrow \\
& V_{\text {max }}=V_{d}-K_{d}\left(\frac{1}{3 \sqrt{3}} \times 10^{-9}-\frac{1}{\sqrt{3}} \times 10^{-9}\right)=1+\frac{6 \times 10^{-1}}{\sqrt{3}}\left(1-\frac{1}{3}\right)=1+\frac{4}{\sqrt{3}} \times 10^{-1}=1.231 \\
& V_{\text {min }}=V_{d}-\frac{4}{\sqrt{3}} \times 10^{-3}=0.769
\end{aligned}
$$

a)
b)
c)
d) $r_{d}=\frac{d r}{d I}=k_{d}\left(3 I^{2}-10^{-6}\right) \cdot 1$ $I_{Q}=0$
e)

$$
=i_{i n}
$$

$$
\begin{aligned}
& \begin{aligned}
& g_{d}=1 r_{d}=-1 / 600, l_{1}=10^{-9} \frac{d v_{\text {at }}}{d t}+(2-1,661) \times 10^{-3} \text { vout }=L_{\text {mi }}
\end{aligned} \\
& \text { f) } \frac{v_{\text {out }}}{i_{\text {in }}}(A)=\frac{\frac{1}{d t}+(2-1,661) \times 10^{-3} \text { vout }=L_{\text {min }}}{C A+\left(g_{d}+G_{L}\right)}=\frac{1}{20 \times 10^{-a}+0.33 \times 10^{-3}}=\frac{(1 / 2) \times 10^{8}}{2+11667 \times 10^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \#1. } y_{\text {ir }}=\frac{1}{R+\frac{1}{C R+G_{C}+\frac{1}{L Q}}}=\frac{1}{R+\frac{L R}{L C R^{2}+L G_{c}^{2}+1}}=\frac{L C Q^{2}+L G_{c} z+1}{R L C Q^{2}+R L G_{C} R+R+L z} \\
& y_{\text {in }}=\frac{1}{R+\frac{1}{C R+G_{c}+\frac{1}{L Q}}}=\frac{1}{R+\frac{L R}{L C R^{2}+L G_{c}{ }^{2}+1}}=\frac{L C Q^{2}+L G_{c} 2+1}{R L C Q^{2}+R L G_{c} 2+R+L z} \\
& \left(G_{c}=1 / R_{C}\right) \quad=\frac{L C A^{2}+\frac{L}{R_{C}} \alpha+1}{R L C s^{2}+\left(\frac{R L}{R_{C}}+h\right) Q+R}=\frac{1}{R}\left[\frac{A^{2}+\frac{1}{C R_{c}} A+\frac{1}{L C}}{A^{2}+\frac{1}{C}\left(1+\frac{R_{C}}{R}\right) A+\frac{1}{L C}}\right] \\
& \text { b) } I=g_{i_{m}}(a) V
\end{aligned}
$$

