
SOFTWARE – Ph.D. Qualifying Exam Spring 2017
(i) (6 pts.)

Consider the following C program, which includes three function definitions, including the main
function.

#include <stdio.h>
#include <string.h>

void g(char *x) {
 int length = strlen(x);
 char *p = NULL;
 if (length != 0) {
 printf("%c\n", x[0]);
 p = &(x[2]);
 g(p);
 }
}

void f(char a[], int x, int *y) {
 x = x + (*y);
 a[x] = '\0';
 a[x + 1] = '\0';
 (*y)++;
 g(a);
}

int main(void) {
 char s[] = "Maryland";
 int x1 = 4;
 int x2 = 2;

 printf("s = %s, x1 = %d, x2 = %d\n",
 s, x1, x2);
 f(s, x1, &x2);
 printf("s = %s, x1 = %d, x2 = %d\n",
 s, x1, x2);

 return 0;
}

Show the complete output as it appears on standard output. Show all work, and clearly indicate
your solution. Show your work and your solution for this problem only on this page and (if more
space is needed) the next page.

In case of an illegal dereferencing of a pointer (e.g., dereferencing of an uninitialized pointer,
null pointer, or pointer that goes beyond the boundaries of an array), show all of the output from
the printf calls that are executed up to the point just before the illegal pointer dereference, and
then write "illegal pointer operation" on the following line.

This page is reserved as extra space for working on and writing your solution to Question
(i).

(ii) (4 pts.)
Consider the following C program.

#include <stdio.h>
#include <ctype.h>

void display_result(int result) {
 static int index = 1;
 printf("result #%d: %d\n", index++, result);
}

int main(void) {
 char *s = "123xyz456abc", *p = s;
 int x = 0, iterations = 0, i = 0;
 const int step = 3, lim1 = 20, lim2 = 63, param1 = 4;

 iterations = 0;
 for (i = 0; i <= lim1; i += step) {
 iterations++;
 }
 display_result(iterations);

 iterations = 0;
 x = lim2;
 while (x > 0) {
 x = x / param1;
 iterations++;
 }
 display_result(iterations);

 iterations = 0;
 for (i = 17; i > 3; i--) {
 i -= 2;
 iterations++;
 }
 display_result(iterations);

 iterations = 0;
 while (!(isalpha(*p))) {
 p++;
 iterations++;
 }
 display_result(iterations);

 iterations = 0;
 for (i = 10; (i + iterations) < 20; i++) {
 if ((i % 3) == 0) {
 iterations += 2;
 } else {
 iterations++;
 }
 }
 display_result(iterations);
 return 0;
}

Show the complete output as it appears on standard output. Show all work, and clearly indicate
your solution. Show your work and your solution for this problem only on this page and (if more
space is needed) the previous page.

(iii) (6 pts.)

Consider the following C program, which includes three function definitions, including the main
function shown on the following page.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct elem {
 int data;
 struct elem *next;
 struct elem *prev;
} elem;

void insert(elem **h, elem *e) {
 e->next = (*h);
 (*h)->prev = e;
 (*h) = e;
 e->prev = NULL;
}

elem *get(elem *h, char *config) {
 elem *p = h;
 int length = strlen(config), i = 0;

 for (i = 0; i < length; i++) {
 if (p == NULL) {
 fprintf(stderr, "invalid access\n");
 exit(1);
 }
 if (config[i] == '+') {
 p = p->next;
 }
 else if (config[i] == '/') {
 p = p->prev;
 }
 }

 return p;
}

int main(void) {
 elem a = {5, NULL, NULL};
 elem *b = NULL; elem *head = &a;
 int data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};
 int i = 0;
 const int len = 10, factor = 7, insertions = 6;

 for (i = 0; i < insertions; i++) {
 b = malloc(sizeof(elem));
 b->data = data[(i * factor) % len];
 printf("inserting: %d\n", b->data);
 insert(&head, b);
 }
 b = get(head, "+aa/++");
 printf("<%d>\n", b->data);
 b = get(b, "/x+y/");
 printf("<%d>\n", b->data);
 b = get(b, "zz++/+/z++");
 printf("<%d>\n", b->data);
 return 0;
}

Show the complete output as it appears on standard output. Show all work, and clearly indicate
your solution. Show your work and your solution for this problem only on this page and (if more
space is needed) the previous page.

In case of an illegal dereferencing of a pointer (e.g., dereferencing of an uninitialized pointer,
null pointer, or pointer that goes beyond the boundaries of an array), show all of the output from
the printf calls that are executed up to the point just before the illegal pointer dereference, and
then write "illegal pointer operation" on the following line.

(iv) (4 pts.)

Consider the following string of if-else statements

if (c == '+') {
 result = x1 + x2;
} else if (c == '-') {
 result = x1 - x2;
} else if (c == '*') {
 result = x1 * x2;
} else {
 result = 0;
}

Write a new version of this code segment that has the same functionality but uses a switch
statement instead of if-else for the required program selection operations.

Show all work, and clearly indicate your solution. Show your work and your solution for this
problem only on the this page and (if more space is needed) the next page.

This page is reserved as extra space for working on and writing your solution to Question
(iv) .

Software	Qualifying	Exam	Solutions	
Spring	2017	
Dept.	of	ECE,	University	of	Maryland,	College	Park	
11/20/2016	
	

Problem	1:	

s = Maryland, x1 = 4, x2 = 2
M
r
l
s = Maryla, x1 = 4, x2 = 3

Problem	2:	

result #1: 7
result #2: 3
result #3: 5
result #4: 3
result #5: 6

Problem	3:	

inserting: 1
inserting: 8
inserting: 5
inserting: 2
inserting: 9
inserting: 6
<2>
<9>
<8>
	
Problem	4:	

switch (c) {
 case '+':
 result = x1 + x2;
 break;
 case '-':
 result = x1 - x2;
 break;
 case '*':
 result = x1 * x2;
 break;
 default:
 result = 0;
 break;
}

