Fall 2018 Written Qualifying Examination Basic Mathematics

1. (a) (3 pts) Provide a mathematically rigorous definition for "the sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to $x^{* \prime \prime}$, where $\left\{x_{k}\right\}_{k=1}^{\infty}$ is a scalar sequence, and x^{*} is a (finite) scalar.
(b) (4 pts) For $k=1,2, \ldots$, let $x_{k}=\sum_{\ell=1}^{k} \frac{1}{\ell}$. Prove or disprove: $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to some (finite) x^{*}. [NOTE: Significant partial credit will be given if key steps are taken.]
2. Let A be a real, symmetric (square) matrix.
(a) (3 pts) Prove that all eigenvalues of A are real.
(b) (3 pts) Prove that the eigenvectors of A associated to different eigenvalues are orthogonal.
3. Consider the system of first order differential equations $y^{\prime}(t)=A y(t)$, where A is a real square matrix, t is a scalar (time), y lies in R^{n}, and y^{\prime} is the derivative of y with respect to t.
(a) (3 pts) Let $n=2$, and $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ (harmonic oscillator). Prove or disprove: There exists a vector $v \neq 0$ such that the solution to the system with auxiliary condition $y(0)=v$ entirely lies on straight line in R^{2}.
(b) (4 pts) Let $n=5$. Prove or disprove: There always exists a vector $v \neq 0$ such that the solution to the given system with auxiliary condition $y(0)=v$ entirely lies on straight line in R^{5}. [Hint: Odd degree (univariate) polynomial equations with real coefficients have at least one real root.]

Solutions

1. (a) The sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to x^{*} if, given $\epsilon>0$, there exists a positive integer N such that $\left|x_{k}-x^{*}\right|<\epsilon$ for every $k \geq N$.
(b) Disproof. For given $n, \sum_{k=n+1}^{2 n} \frac{1}{k}>n \frac{1}{2 n}=\frac{1}{2}$. Hence, for $k=2^{N}, N$ any positive integer, $x_{k}=\sum_{\ell=1}^{k} \frac{1}{\ell}=1+\sum_{n=1}^{N} \sum_{\ell=2^{n-1}+1}^{2^{n}}>1+\frac{N}{2}$. Since $\left\{x_{k}\right\}$ is monotonically increasing, it follows that $x_{k} \rightarrow \infty$ as $k \rightarrow \infty$.
2. (a) Let λ be an eigenvalue of A, and let $v \neq 0$ be an associated eigenvector. Then

$$
\lambda^{*}\left(v^{*}\right)^{T} v=\left(v^{*}\right)^{T} A^{T} v=\left(v^{*}\right)^{T} A v=\left(v^{*}\right)^{T} \lambda v=\lambda\left(v^{*}\right)^{T} v
$$

so that $\left(\lambda-\lambda^{*}\right)\|v\|^{2}=0$, hence (since $v \neq 0$), $\lambda=\lambda^{*}$.
(b) Let $\lambda_{1} \neq \lambda_{2}$ be (real) eigenvalues of A, and v_{1}, v_{2} be associated (real) eigenvectors. Then

$$
\lambda_{1} v_{2}^{T} v_{1}=v_{2}^{T} A v_{1}=v_{2}^{T} A^{T} v_{1}=\lambda_{2} v_{2}^{T} v_{1}
$$

Hence $\left(\lambda_{1}-\lambda_{2}\right) v_{2}^{T} v_{1}=0$. Since $\lambda_{1} \neq \lambda_{2}$, the claim follows.
3. (a) Disproof. If $y(t)$ is a solution, then

$$
\frac{d}{d x}\left(y_{1}^{2}+y_{2}^{2}\right)=2\left(y_{1} y_{1}^{\prime}+y_{2} y_{2}^{\prime}\right)=2\left(y_{1} y_{2}-y_{2} y_{1}\right)=0
$$

Hence $y_{1}(t)^{2}+y_{2}(t)^{2}$ does not depend on x, so is equal to $y_{1}(0)^{2}+y_{2}(0)^{2}=v_{1}^{2}+v_{2}^{2}=$ $\|v\|^{2} \neq 0$. I.e., for every $x, y(t)$ lies on a circle of radius $\|v\| \neq 0$, hence (since $y(t)$ is not constant) does not lie on a straight line.
(b) Proof. $\operatorname{det}(\lambda I-A)$ is a 5 th degree polynomial in λ. Odd degree polynomials with real coefficients have at least one real root, i.e., A has at least one real eigenvalue $\hat{\lambda}$. Let \hat{v} be a (real) eigenvector associated to $\hat{\lambda}$. If $y(0)=\hat{v}$ then $y(t)=\exp (t A) \hat{v}=\exp (\hat{\lambda} t) \hat{v}$, which lies on the ray (straight half-line) that supports \hat{v}.

