- For the following circuits, unless otherwise stated, assume that the op-amp is ideal (zero input currents and zero input difference voltage [due to infinite gain]).
- And assume that a npn transistor is described by the Ebers-Moll model which has for the collector current:

$$
\mathrm{I}_{\mathrm{C}}=\alpha \mathrm{I}_{\mathrm{Eo}}\left(1-\exp \left(\mathrm{V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)\right)-\mathrm{I}_{\mathrm{Co}}\left(1-\exp \left(\mathrm{V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)\right)
$$

\#1. (6 points) For the following feedback circuit:

a) (4 points) Find Vout as a function of Vin .
b) (2 points) If the op-amp is not ideal and actually saturates at supply bias voltages $\pm \mathrm{V}_{\text {supply }}$, discuss limitations on the validity of your answer in part a)
\#2. (7 points) In the following circuit the amplifier is a unity voltage gain one with no input current

(a) (3points) Find the transfer function Vout(s)/Vin(s)
(b) (2 points) Give the zeros and poles of the transfer function and the unit impulse response.
(c) (2 points) Give an ideal op-amp realization of the amplifier.
\#3) (7 points) The following is a circuit diagram for a General Impedance Converter (GIC) for which the input impedance is given as:

$$
\mathrm{Zin}(\mathrm{~s})=\mathrm{Z} 0(\mathrm{~s})+(\mathrm{Z} 1(\mathrm{~s}) \cdot \mathrm{Z} 3(\mathrm{~s}) \cdot \mathrm{Z} 5(\mathrm{~s})) /(\mathrm{Z} 2(\mathrm{~s}) \cdot \mathrm{Z} 4(\mathrm{~s}))
$$

Choose $\mathrm{Z2}$ and $\mathrm{Z4}$ as equal capacitors of capacitance C and all other branches as resistors with equal resistance R.
a) (2 points) Give Zin(s) in terms of the chosen components.
b) (3 points) Give the poles and zeros of Zin(s).
c) (2 points) The circuit can be an oscillator. Give conditions for this and the oscillation frequency in terms of R and C.

Cicusits F 2018 toletioner

$$
\begin{gathered}
\Rightarrow \frac{V_{10}}{\alpha I_{E_{0} R}}-1=e^{-V_{\mathrm{mad}} / V_{T}} \\
\Rightarrow V_{T} \ln (
\end{gathered}
$$

$$
\begin{aligned}
& 1=-e^{-V_{\text {mat }} / V_{T}} \\
& \Rightarrow V_{T} \ln \left(1-\frac{V_{\text {in }}^{2}}{\alpha I_{E_{0}}^{2}}\right)=-V_{\text {oui }} \Rightarrow V_{\text {out }}=-V_{T} \ln \left(1-\frac{V_{\min }}{\alpha I_{L_{R}} R}\right) \\
& -V<-V_{T} \ln \left(1-\frac{V_{\text {in }}}{\alpha I_{0} R}\right)<+V
\end{aligned}
$$

 limuts $V_{\text {mi }}$ to cover $V_{\text {ont }}$ in the for (.) regiom.

a) on C_{2} i fert \& volisge divixer

$$
\text { cursent foner into } C_{2} .
$$

by urity goim ampelfies
 certit Ales

c)

\#3. $Z_{2}(A)=Z_{4}(R)=\frac{1}{C_{2}}, Z_{0}=Z_{1}=Z_{2}=Z_{3}=R \Rightarrow Z_{i n}(R)=R+R^{3} \cdot \frac{1}{\left(\frac{1}{C}\right)^{2}}=R+R^{3} C^{2} x^{2}$
b) Rolec, tata $R A=\infty$, zesor $\Rightarrow 0=R+R^{3} C^{2} A_{0}^{2} \Rightarrow A_{0}^{2}=-\frac{R}{R^{2} C^{2}}=-\frac{1}{(R C)^{2}} \Rightarrow A_{a_{t}}= \pm i \frac{1}{R C}$ $a_{A} V_{\min }(a)=\left(R+R^{3} c^{2} A^{2}\right) I_{i+1}$

Whosi corcuit $\Rightarrow V_{i n}=0 \Rightarrow I_{\text {in }} \neq 0 \cdot \mathrm{f} Z_{\min }(1)=0 \Rightarrow O_{2}$ are shoit cerncet opeen cievit $\Rightarrow I_{i}=0 \Rightarrow V_{i n} \neq 0$ if $Z \operatorname{in}(A)=\infty \Rightarrow A=\infty$ is areopen cereunt meturel frepremer

1) To te an obeithtor initiel condition to axféte the circuit
 \& for firite orex werhen the mpent ix eherted and

$$
A_{0}=j \omega_{0} \Rightarrow \omega_{0}=\frac{1}{R C} \equiv f_{0 \times C}=\frac{1}{2 \pi R C} \text { Hact }
$$

