SOLUTIONS

Problem 1 - Carrier Diffusion in 1-D

Consider the one-dimensional problem of an extremely narrow, uniformly-doped, p-type bar of silicon of length L with an ohmic contact on the right-hand side at $\mathrm{x}=\mathrm{L}$. Electron-hole pairs are being generated at a rate of G .

The minority carrier diffusion length constant Le is neither very-short nor very-long compared to L. Assume that you know the minority carrier diffusion constant D_{n}. The homogeneous solution is: $n^{\prime}(\mathrm{x})=A \mathrm{e}^{\frac{x}{L e}}+B e^{\frac{-x}{L e}}$
a) (5 pts) Find an expression for the excess minority carrier concentration $n^{\prime}(x)$ from $x=0$ to $x=L$.
b) (2 pts) Unlike in part (a), if we could assume that $L \gg L e$, find an expression for the excess minority carrier concentration $n^{\prime}(x)$ from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{L}$.

1a) $n^{\prime}(x)=A e^{\frac{x}{L e}}+B e^{\frac{-x}{L e}} \quad$ with the boundary conditions: $n^{\prime}(\mathrm{L})=0$ and $F l u x(x=0)=G=-D_{n} \frac{d n^{\prime}(0)}{d x}$
Using the first boundary condition: $\quad n^{\prime}(L)=0=A e^{\frac{L}{L e}}+B e^{\frac{-L}{L e}} \rightarrow-A e^{\frac{L}{L e}}=B e^{\frac{-L}{L e}} \rightarrow A=-B e^{\frac{2 L}{L e}}$
Using the second boundary condition: $G=-D_{n} \frac{d n^{\prime}(0)}{d x}=-D_{n}\left(\frac{A}{L e} e^{0}-\frac{B}{L e} e^{0}\right)=\frac{-D_{n}}{L e}(A-B)$

$A=-\left(\left.\frac{G \cdot L e}{D_{n}\left(e^{\frac{-2 L}{L e}}+1\right)} e^{\frac{-2 L}{L e}}=\frac{-G \cdot L e}{D_{n}} \frac{e^{\frac{-2 L}{L e}}}{e^{\frac{-2 L}{L e}}+1} \right\rvert\,\right.$ so we get: $n^{\prime}(x)=\frac{-G \cdot L e \cdot e^{\frac{-2 L}{L e}}}{D_{n}\left(e^{\frac{-2 L}{L e}}+1\right)} \cdot e^{\frac{x}{L e}}+\frac{G \cdot L e}{D_{n}\left(e^{\frac{-2 L}{L e}}+1\right)} \cdot e^{\frac{-x}{L e}}$
1b) $L \gg L e$
$n^{\prime}(x)=A e^{\frac{x}{L e}}+B e^{\frac{-x}{L e}} \quad$ with the boundary conditions: $n^{\prime}(\mathrm{L})=0$ and $F l u x(x=0)=G=-D_{n} \frac{d n^{\prime}(0)}{d x}$
Using the first boundary condition: $n^{\prime}(L)=0=A e^{\frac{L}{L e}}+B e^{\frac{-L}{L e}} \rightarrow-A e^{\frac{L}{L e}}=B e^{\frac{-L}{L e}} \rightarrow A=-B e^{\frac{-2 L}{L e}}$ but because $L \gg L e, A \approx 0$ and the solution takes the simple decaying exponential form: $n^{\prime}(x) \approx B e^{\frac{-x}{L e}}$

Using the second boundary condition: $G=-D_{n} \frac{d n^{\prime}(0)}{d x}=-D_{n}\left(-\frac{B}{L e} e^{0}\right)=D_{n} \frac{B}{L e} \rightarrow \frac{G \cdot L e}{D_{n}}=B \quad$ Therefore,
$n^{\prime}(x) \approx \frac{G \cdot L e}{D_{n}} e^{\frac{-x}{L e}}$

Problem 2 - PN-junction diode

Consider a diode with two-level doping on each side. Use the resulting depletion region charge distribution shown in the figure on the right.
a) (2 pts) If you are given $-x 1,-x 2$, and $x 4$, find an expression for $x 3$. Be sure to show your steps and explain any assumptions you use.
b) (5 pts) Make a BIG, unambiguous sketch of both the resulting electric field (vs x) and the potential (vs x). Be
 sure to clearly label where $x 1, x 2, x 3$, and $x 4$ are. You do NOT need to label the electric field or potential levels.
$\left(x_{1}-x_{2}\right) N_{D 1}+x_{2} N_{D 2}=\left(x_{4}-x_{3}\right) N_{A 2}+x_{3} N_{A 1} \quad$ solving for x_{3}
$\left(x_{1}-x_{2}\right) N_{D 1}+x_{2} N_{D 2}-x_{4} N_{A 2}=x_{3}\left(N_{A 1}-N_{A 2}\right)$

$$
\frac{\left(x_{1}-x_{2}\right) N_{D 1}+x_{2} N_{D 2}-x_{4} N_{A 2}}{N_{A 1}-N_{A 2}}=x_{3}
$$

Problem 3 - N-Channel Enhancement-Mode MOSFET

The standard formula for the above-threshold, saturation-mode, drain current in the nFET is: $I_{D}=\frac{1}{2} k_{n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}$ where $V_{G S}$ is the gate to source voltage, V_{t} is the threshold voltage, k_{n}^{\prime} is the process transconductance, and W / L is the width to length ratio. In the triode mode of operation, the drain current equation is given as:
$I_{D}=k_{n} \cdot \frac{W}{L}\left[\left(V_{G S}-V_{t}\right) V_{D S}-\frac{1}{2} V_{D S}{ }^{2}\right]$
a) (3 pts) If the source is tied to ground (0 volts) and the gate and drain are connected together, we have the "diode configuration". Assuming saturated, above-threshold operation, solve for the small signal equivalent resistance seen to ground as a function of $V_{G S}$.
b) (3 pts) In triode, we can also obtain a small signal equivalent resistance by biasing the gate above threshold, and operating the drain voltage separately. Find the expression for this resistance from the drain to ground as a function of $V_{G S}$.

3a) The small signal equivalent conductance would be: $\frac{d I_{D}}{d V_{G S}}=d\left(\frac{1}{2} k_{n}^{\prime} \cdot \frac{W}{L}\left(V_{G S}-V_{t}\right)^{2}\right) / d V_{G S}=k_{n}^{\prime} \cdot \frac{W}{L}\left(V_{G S}-V_{t}\right)$ and the equivalent resistance would then be: $r_{e q}=\frac{1}{k_{n} \cdot \frac{W}{L}\left(V_{G S}-V_{t}\right)}$

3b) $g_{D}=\frac{d I_{D}}{d V_{D}}=k_{n} \cdot \frac{W}{L}\left[\left(V_{G S}-V_{t}\right)-V_{D S}\right]$
$r_{D}=\frac{1}{k_{n}^{\prime} \frac{W}{L}\left[\left(V_{G S}-V_{t}\right)-V_{D S}\right]}$

