Solutions

ECE Written Qualifying Examination, Fall 2018 Digital Logic

1. (5 points) Boolean Simplification.

Using the Quine-McCluskey method, obtain all the prime implicants for

$$f(x,y,z) = \sum m(0,2,3,5,7).$$

$$\begin{array}{c|cccc}
\hline
(0) 000 & (0,2) 0-0 \\
\hline
(2) 010 & (2,3) 01- \\
\hline
(3) 011 & (3,7) -11 \\
(5) 101 & (5,7) 1-1 \\
\hline
(7) 111
\end{array}$$

2. (5 points) Boolean Algebra.

Using Boolean Algebra postulates and theorems prove that

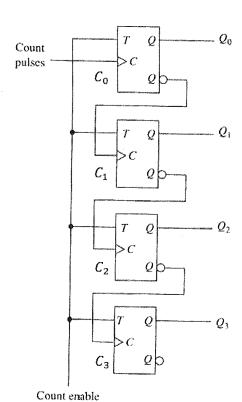
$$(x+z)(y+z)(\overline{y}+\overline{z}) = \overline{y}z + xy\overline{z}$$

No credit will be given for solutions that use the truth table method.

$$\begin{aligned} \angle HS &= (z+x)(z+y)(\bar{y}+\bar{z}) & Commutative \\ &= (z+xy)(\bar{y}+\bar{z}) & Distributive \\ &= z\bar{y}+xy\bar{y}+z\bar{z}+xy\bar{z} & Distributive \\ &= \bar{y}z+x\cdot 0+0+xy\bar{z} & Complement \\ &= \bar{y}z+0+0+xy\bar{z} & Null Elements \\ &= \bar{y}z+xy\bar{z}=PHS & Identity \end{aligned}$$

3. (5 points) Counters.

For the binary ripple counter pictured below, fill in the following table which shows the values of $Q_0, Q_1, Q_2, Q_3, C_0, C_1, C_2, C_3$ during each clock pulse. Assume count enable is set to 1.



C_0	Q_0	C_1	Q_1	C_2	Q_2	C_3	Q_3
0	0	1	0	1	0	1	0
1	1	0	0	4	0	1	0
0	1	0	0	1	٥	1	0
1	Ô	1	1	Ò	0	1	0
0	0	1	1	٥	٥	1	0
1	1	0	1	0	٥	1	٥
0	1	٥	1	0	0	1	0
1	٥	1	0	1	1	٥	0
0	0	1	0	1	1	٥	0
1	1	0	0	1	1	٥	0

Page 2

4. (5 points) State Diagram.

Draw the state diagram of a minimal Mealy machine having two input lines x, y, in which the signals $\{0,1\}$ are applied, and a single output line z. For $i=1,2,3,4,\ldots$ let x_i,y_i denote the i-th input values. For $i\geq 1$, the system is to produce an output of 1 coincident with input symbols x_i,y_i if the binary number represented by x_i,\ldots,x_1 is greater than the binary number y_i,\ldots,y_1 , where x_i and y_i are the most significant bits and x_1 and y_1 are the least significant bits. At all other times the system is to output 0.

An example of input/output sequences that satisfy the conditions of the system specification is:

i	1	2	3	4	5	6	7	8	9	10	11
x	1	0	1	1	1	0	1	0	1	1	0
y	1	1	1	0	0	1	1	0	0	1	0
z	0	0	0	1	1	0	0	0	1	1	1

In the example above, the system produces an output of 1 coincident with the 4-th input symbol. This occurs since the 1-st, 2-nd, 3-rd and 4-th input symbols are 1,0,1,1 on the x input line and 1,1,1,0 on the y input line, since 1101 > 0111, the system outputs 1.

Your state diagram should have the minimum number of states possible.

