Solutions

1. (6) 10 Amperes of current are flowing in the same direction in each of two wires that are separated by 10 cm . The wires are 5 m long.
What is the magnitude and direction of the force on each wire. Ignore the end effects

Magnetic field at the other wire is $H=\frac{I}{2 \pi \rho}=\frac{10}{2 \cdot \pi \cdot 0.1}=\frac{50}{\pi} \mathrm{Amp} / \mathrm{meter}$
Force is $F=l I \times B=l I \mu_{0} H=5 \cdot 10 \cdot 4 \pi \cdot 10^{-7} \cdot \frac{50}{\pi}=10^{-3}$ Newtons

Attractive force

2. (7pts) An AC voltage generator with output impedance of $\boldsymbol{R}_{g}=\mathbf{1 0} \boldsymbol{\Omega}$, peak amplitude of $V_{g}=\mathbf{1 0 0}$ Volts operating at $\mathbf{3 0 0} \mathbf{~ M H z}$ is connected to a two-wire transmission line with characteristic impedance of 300Ω.
The transmission line is $\mathbf{2 5} \mathbf{~ c m}$ long and is terminated with a load with impedance $\boldsymbol{Z}_{L}=\mathbf{1 0} \mathbf{+ 1 0 j} \Omega$. The transmission line is imbedded in a dielectric material of with $\boldsymbol{\varepsilon}_{\mathrm{r}}=\mathbf{4}$ and $\boldsymbol{\mu}_{\mathrm{r}}=\mathbf{1}$.

a. Calculate the phasors for voltage and current at input to the transmission line (point A).

The wavelength in vacuum is $\lambda_{0}=\frac{c}{300 \mathrm{MHz}}=\frac{3 \cdot 10^{8} \mathrm{~m} / \mathrm{sec}}{3 \cdot 10^{8} / \mathrm{sec}}=1 \mathrm{~meter}$
In the transmission line $\lambda=\frac{\lambda_{0}}{\sqrt{\varepsilon_{r}}}=\frac{\lambda_{0}}{2}=50 \mathrm{~cm}$

The transmission line length is $\frac{\lambda}{2}$. It is the equivalent to no transmission line.

$$
\begin{aligned}
& \tilde{V}_{A}=V_{g} \frac{Z_{L}}{Z_{L}+R_{g}}=100 \frac{10+10 j}{20+10 j}=100 \frac{1+j}{2+j}=\frac{100}{5}(1+j)(1-2 j)=20(3-j)=60+20 j \text { Volts } \\
& \tilde{I}_{A}=V_{g} \frac{1}{Z_{L}+R_{g}}=100 \frac{1}{20+10 j}=10 \frac{1}{2+1 j}=\frac{10}{5}(2-j)=2(2-j)=4-2 j \text { Amps }
\end{aligned}
$$

b. What is the average power going into the transmission line?

$$
\left.P_{\text {Ave }}=\frac{1}{2} \operatorname{Re}\left(\tilde{V}_{A} \tilde{I}^{*}\right)=\frac{1}{2} \operatorname{Re}\{(60+20 j)(4+2 j)\}=\frac{1}{2} \operatorname{Re}\{200+200 j)\right\}=100 \text { Watt }
$$

3.(7pts) In a parallel plate waveguide with plate separation b, the z component of E field for TM_{1} mode at radial frequency ω, given by phasor

$$
\boldsymbol{E}_{z}(y, z)=A \sin \left(\frac{\pi y}{b}\right) e^{-j \beta z}
$$

Waveguide is infinite in x direction; there is no variation of the fields in x direction. The plates are ideal conductors and the medium between them is vacuum.
a. What is the relationship between the frequency ω and the propagation constant β ?

In general, for a waveguide, we can write the fields in the form

$$
\text { and } \begin{aligned}
\boldsymbol{E}(x, y, z) & =\boldsymbol{E}^{0}(x, y, z) e^{-j \beta z} \\
\boldsymbol{H}(x, y, z) & =\boldsymbol{H}^{0}(x, y, z) e^{-j \beta z}
\end{aligned}
$$

The fields satisfy the wave equation: $\vec{\nabla}^{2} \boldsymbol{E}+k^{2} \boldsymbol{E}=0$

$$
\nabla_{x y}^{2} E^{0}(x, y)+\left(-\beta^{2}+k^{2}\right) E^{0}(x, y)=0
$$

For this mode $h^{2}=-\beta^{2}+k^{2}=\left(\frac{\pi}{b}\right)^{2} \quad-\beta^{2}+\omega^{2} \mu \varepsilon=\left(\frac{\pi}{b}\right)^{2} \quad \beta=\sqrt{\omega^{2} \mu \varepsilon-\left(\frac{\pi}{b}\right)^{2}}$
b. Calculate expressions for phasors for all the non-zero components of the E and H fields for this mode.
These fields are related by the Maxwell's equations $\nabla \times \boldsymbol{E}=-j \omega \mu \boldsymbol{H}$ and $\nabla \times \boldsymbol{H}=j \omega \varepsilon \boldsymbol{E}$
$\nabla \times \boldsymbol{E}=\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_{x}^{0}(x, y) e^{-\gamma_{z}} & E_{y}^{0}(x, y) e^{-\gamma_{z}} & E_{z}^{0}(x, y) e^{-\gamma z}\end{array}\right|$

$$
\nabla \times H=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
H_{x}^{0}(x, y) e^{-\gamma_{z}} & H_{y}^{0}(x, y) e^{-\gamma_{z}} & H_{z}^{0}(x, y) e^{-\gamma_{z}}
\end{array}\right|
$$

We have six equations relating different field components.

$$
\begin{array}{lll}
\frac{\partial}{\partial y} E_{z}^{0}+\gamma E_{y}^{0}=-j \omega \mu H_{x}^{0} & -\gamma E_{x}^{0}-\frac{\partial}{\partial x} E_{z}^{0}=-j \omega \mu H_{y}^{0} & \frac{\partial}{\partial y} E_{x}^{0}-\frac{\partial}{\partial x} E_{y}^{0}=-j \omega \mu H_{z}^{0} \\
\frac{\partial}{\partial y} H_{z}^{0}+\gamma H_{y}^{0}=j \omega \varepsilon E_{x}^{0} & -\gamma H_{x}^{0}-\frac{\partial}{\partial x} H_{z}^{0}=j \omega \varepsilon E_{y}^{0} & \frac{\partial}{\partial y} H_{x}^{0}-\frac{\partial}{\partial x} H_{y}^{0}=j \omega \varepsilon E_{z}^{0}
\end{array}
$$

TM mode has $H_{z}^{0}=0$, and derivative of each field component with respect to x is zero. From these equations we get $E_{x}^{0}=0, H_{y}^{0}=0$ and
$H_{x}^{0}=\frac{j \omega \varepsilon}{\gamma^{2}+\omega^{2} \mu \varepsilon} \frac{\pi}{b} A \cos \left(\frac{\pi y}{b}\right)=\frac{j \omega \varepsilon}{h} A \cos \left(\frac{\pi y}{b}\right)$
$E_{y}^{0}=\frac{-j \beta}{\gamma^{2}+\omega^{2} \mu \varepsilon} \frac{\pi}{b} A \cos \left(\frac{\pi y}{b}\right)=\frac{-j \beta}{h} A \cos \left(\frac{\pi y}{b}\right)$
c. Write down the expressions for all the real non-zero E field components for TM_{1} at $\mathrm{t}=0$, and sketch the shape of the E field lines for TM_{1} mode

$$
\begin{aligned}
& E_{z}(y, z)=A \sin \left(\frac{\pi y}{b}\right) \cos (\beta z) \\
& E_{y}=\operatorname{Re}\left\{-\frac{j \beta}{h} A \cos \left(\frac{\pi y}{b}\right) e^{-j \beta z}\right\}=\operatorname{Re}\left\{-\frac{j \beta}{h} A \cos \left(\frac{\pi y}{b}\right)(\cos \beta z-j \sin \beta z)\right\}=-\frac{\beta}{h} A \cos \left(\frac{\pi y}{b}\right) \sin \beta z
\end{aligned}
$$

TM_{1} mode

Electric fields are shown with dashed red lines

