Part 1 (6 pts)
In each part of this problem, the step response shown corresponds to one of the following system functions:

$$
H_{1}(s)=\frac{2 s}{s^{2}+s+1} \quad H_{2}(s)=\frac{s^{2}+1}{s^{2}+s+1} \quad H_{3}(s)=\frac{2 s}{s^{4}+s^{2}+1}
$$

(a) In the step response shown to the right, the graph seems to level out at about $\mathrm{y}=1$. Is $\mathrm{y}=1$ the exact final value as t goes to infinity? If so, explain why. If not, give the actual limiting value of y.

(b) In the step response shown to the right, the curve appears to cross the t-axis at about $t=3.5$. Is this the exact value at which the crossing occurs? If so, explain why. If not, give the actual value at which the crossing occurs.

(c) In the step response shown to the right, the response appears not yet to have reached a steady state at $t=10$. If we extend the time scale, should we expect the response ultimately to reach a steady state? Or should we expect some other type of behavior? Explain your answer.

Part 2 (5 pts)
Find $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})$ if $x(\mathrm{t})=\sum_{n=-\infty}^{\infty} \delta(\mathrm{t}-n) \quad$ and the FT of $h(t)$,
$H(\omega)=\left\{\begin{aligned} j \sin \left(\frac{\omega}{4}\right), & |\omega|<4 \pi \\ 0, & \text { otherwise }\end{aligned}\right.$

Part 3 (4 pts).
Let $\mathrm{X}(\omega)$ be the Fourier transform of the signal $\mathrm{x}(\mathrm{t})$ shown below.

Sketch the inverse Fourier transform of $\operatorname{Re}\{X(\omega)\}$ without explicitly finding $X(\omega)$.

Part 4. (5 pts) Find $x[n]$ based on the following four facts:
(a) $x[n]=0$ for $n>0$
(b) $x[0]>0$
(c) $\operatorname{Im}\{X(\Omega)\}=\sin \Omega-\sin 2 \Omega$
(d) $\frac{1}{2 \pi} \int_{-\pi}^{\pi}|X(\Omega)|^{2} d \Omega=3$

Answers:

Part 1.
(a) Only $H_{2}(s)$ has a value at $s=0$ that is not zero, and that value is 1 . So, the limiting value is precisely 1 .
(b) The step response dies away so that it is due to a stable system. Thus, it must be due to $H_{1}(s)$. The step response is the inverse of $\frac{1}{s} H_{1}(s)=\frac{2}{s^{2}+s+1}$ which has poles at $s=-\frac{1}{2} \pm \frac{\sqrt{3}}{2}$ giving $y(t)=\frac{4}{\sqrt{3}} e^{-t / 2} \sin \frac{\sqrt{3}}{2} t, t>0 . y(t)$ has it's first zero at $\frac{\sqrt{3}}{2} t=\pi$ or $t=\frac{2 \pi}{\sqrt{3}} \neq 3.5$
(c) This is the step response of $H_{3}(s)$ which is unstable with poles at the root of $s^{4}+s^{2}+1$, or at $s^{2}=-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$ which gives roots at $s= \pm \frac{1}{2} \pm j \frac{\sqrt{3}}{2}$. Right half plane poles correspond to growing exponentials so no steady state will be reached.

Part 2. $X(\omega)=2 \pi \sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k)$ and
$H(\omega) X(\omega)=2 \pi j \sin \left(\frac{\pi}{2}\right) \delta(\omega-2 \pi)+2 \pi j \sin \left(-\frac{\pi}{2}\right) \delta(\omega+2 \pi)$ so that $y(t)=-2 \sin 2 \pi t$

Part (3). $\operatorname{Re}\{X(\omega)\} \leftrightarrow x_{\text {even }}(t)=\frac{x(t)+x(-t)}{2}$

Part 4. $\operatorname{jIm}\left\{X(\Omega\} \leftrightarrow x_{o d d}[n]=\frac{1}{2}(-\delta[n+2]+\delta[n+1]-\delta[n-1]+\right.$ $\delta[n-2])=\frac{x[n]-x[-n]}{2}$, given $x[n]=0, n>0$ then $x[n]=2 x_{o d d}[n]$ for $n<0$. Finally, using Parseval's theorem, we know that $\sum_{n=-\infty}^{\infty} x^{2}[n]=3$ so that $x[0]=1$. Thus, $x[n]=-\delta[n+2]+\delta[n+1]+\delta[n]$.

