PROBABILITY - Ph.D. Qualifying Exam Fall 2018

Part 1: Consider that two random variables X and Y are jointly uniformly distributed in the set A depicted in Figure 1, or equivalently, the joint probability density function (PDF) is:

$$f_{XY}(x,y) = \begin{cases} 0.5 & \text{if } y \le x \text{ and } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

- A) (4 pt) Obtain f_Z denoting the PDF of $Z := X^2$.
- B) (3 pt) Determine f_W representing the PDF of W := Y X.

Figure 1: The joint PDF $f_{X,Y}$ is uniformly distributed in \mathbb{A} and is 0 outside of \mathbb{A} .

Exercise 2: Assume that a waiter receives credit card payments from *n* customers and accidentally mixes up the cards in a totally random way before returning them.

- A) (3 pts.) Determine the probability that at least one customer will get the right card when n is 4.
- B) Let P_n represent the probability that no customer gets the right card when there are n customers.
 - B-i) (2 pts.) Determine a sequence of non-negative constants $\alpha_1, \alpha_2, \ldots$ such that P_n satisfies the following equality for every n greater than or equal to 3:

$$P_n + \alpha_1 P_{n-1} + \dots + \alpha_{n-2} P_2 + \alpha_{n-1} P_1 + \alpha_n = 1,$$

B-ii) (2 pts.) Could P_n converge to 0 or 1 as n tends to infinity? Briefly justify your answer.

Exercise 3: Consider a system that comprises N components, and let X_1 through X_N represent their lifetimes. Assume that X_1 through X_N are all independent exponential random variables with parameter λ .

- A) (3 pts.) Let $Z_{min} := \min\{X_1, \ldots, X_N\}$ be the random variable defined as the time at which the first component fails. Determine the PDF and the expected value of Z_{min} as a function of N and λ .
- B) (3 pts.) Let $Z_{max} := \max\{X_1, \ldots, X_N\}$ be the random variable defined as the time at which the last component fails. Determine the PDF of Z_{max} as a function of N and λ .

SOLUTIONS

SOLUTION 1-A)

$$f_X(x) = \begin{cases} \frac{x}{2} & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

$$P(Z \le z) = P(X^2 \le z) = P(X \le \sqrt{z}), \quad 0 \le z \le 4$$

$$P(X \le \sqrt{z}) = \begin{cases} \frac{z}{4} & 0 < z \le 4\\ 0 & z \le 0\\ 1 & z > 4 \end{cases}$$

$$f_Z(z) = \begin{cases} \frac{1}{4} & 0 < z \le 4\\ 0 & \text{otherwise} \end{cases}$$

SOLUTION 1-B)

$$P(W \le w) = \begin{cases} 1 & w > 0\\ \frac{(2+w)^2}{4} & -2 \le w \le 0\\ 0 & w < -2 \end{cases}$$
$$f_W(w) = \begin{cases} 1 + \frac{w}{2} & -2 \le w \le 0\\ 0 & \text{otherwise} \end{cases}$$

SOLUTION 2-A) Using counting arguments $P(\text{no right card}) = \frac{9}{24}$ so $P(\text{at least one card match}) = \frac{15}{24}$.

SOLUTION 2-B-i)

$$\alpha_n = \frac{1}{n!}, \quad n \ge 1$$

To get to this result notice that the following identity concerning the number of permutations holds: $n! = \#(n \text{ cards match, n clients}) + \#(n - 1 \text{ cards match, n clients}) + \dots + \#(0 \text{ cards match, n clients})$ Define $G_q = \#(0 \text{ cards match, q clients})$ for $q \ge 1$, then for $1 \le m < n$ we have

$$\#(m \text{ cards match, n clients}) = \binom{n}{m} G_{n-m}$$

Dividing the first identity by n! and from the above, we get:

$$1 = \frac{1}{n!} + \binom{n}{n-1} \frac{G_1}{n!} + \binom{n}{n-2} \frac{G_2}{n!} + \dots + \binom{n}{1} \frac{G_{n-1}}{n!} + \frac{G_n}{n!}$$
$$1 = \frac{1}{n!} + \frac{1}{(n-1)!} G_1 + \frac{1}{(n-2)!} \frac{G_2}{2!} + \dots + \frac{G_{n-1}}{(n-1)!} + \frac{G_n}{n!}$$

We conclude by noticing that $P_n = \frac{G_n}{n!}, \quad n \ge 1.$

SOLUTION 2-B-ii) Clearly the limit cannot be 0 nor 1. The limit is e^{-1} .

SOLUTION 3-A)

$$P(Z_{min} > z) = P(X_1 > z) \cdots P(X_N > z) = \begin{cases} e^{-N\lambda z} & z \ge 0\\ 0 & z < 0 \end{cases}$$

This gives $f_{Z_{min}}(z) = N\lambda e^{-N\lambda z}$ for $z \ge 0$ and $E[Z_{min}] = \frac{1}{N\lambda}$.

SOLUTION 3-B) Using a similar method $P(Z_{max} \leq z) = [1 - e^{-\lambda z}]^N$ for $z \geq 0$ and $f_{Z_{max}}(z) = \lambda N [1 - e^{-\lambda z}]^{N-1} e^{-\lambda z}$ for $z \geq 0$.