PROBABILITY - Ph.D. Qualifying Exam Fall 2018

Part 1: Consider that two random variables X and Y are jointly uniformly distributed in the set \mathbb{A} depicted in Figure 1, or equivalently, the joint probability density function (PDF) is:

$$
f_{X Y}(x, y)= \begin{cases}0.5 & \text { if } y \leq x \text { and } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

A) (4 pt) Obtain f_{Z} denoting the PDF of $Z:=X^{2}$.
B) ($\mathbf{3} \mathbf{p t})$ Determine f_{W} representing the PDF of $W:=Y-X$.

Figure 1: The joint PDF $f_{X, Y}$ is uniformly distributed in \mathbb{A} and is 0 outside of \mathbb{A}.

Exercise 2: Assume that a waiter receives credit card payments from n customers and accidentally mixes up the cards in a totally random way before returning them.
A) ($\mathbf{3} \mathbf{~ p t s .}$) Determine the probability that at least one customer will get the right card when n is 4 .
B) Let P_{n} represent the probability that no customer gets the right card when there are n customers.

B-i) (2 pts.) Determine a sequence of non-negative constants $\alpha_{1}, \alpha_{2}, \ldots$ such that P_{n} satisfies the following equality for every n greater than or equal to 3 :

$$
P_{n}+\alpha_{1} P_{n-1}+\cdots+\alpha_{n-2} P_{2}+\alpha_{n-1} P_{1}+\alpha_{n}=1
$$

B-ii) (2 pts.) Could P_{n} converge to 0 or 1 as n tends to infinity? Briefly justify your answer.

Exercise 3: Consider a system that comprises N components, and let X_{1} through X_{N} represent their lifetimes. Assume that X_{1} through X_{N} are all independent exponential random variables with parameter λ.
A) (3 pts.) Let $Z_{\min }:=\min \left\{X_{1}, \ldots, X_{N}\right\}$ be the random variable defined as the time at which the first component fails. Determine the PDF and the expected value of $Z_{\min }$ as a function of N and λ.
B) (3 pts.) Let $Z_{\max }:=\max \left\{X_{1}, \ldots, X_{N}\right\}$ be the random variable defined as the time at which the last component fails. Determine the PDF of $Z_{\max }$ as a function of N and λ.

SOLUTIONS

SOLUTION 1-A)

$$
\begin{gathered}
f_{X}(x)= \begin{cases}\frac{x}{2} & 0 \leq x \leq 2 \\
0 & \text { otherwise }\end{cases} \\
P(Z \leq z)=P\left(X^{2} \leq z\right)=P(X \leq \sqrt{z}), \quad 0 \leq z \leq 4 \\
P(X \leq \sqrt{z})= \begin{cases}\frac{z}{4} & 0<z \leq 4 \\
0 & z \leq 0 \\
1 & z>4\end{cases} \\
f_{Z}(z)= \begin{cases}\frac{1}{4} & 0<z \leq 4 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

SOLUTION 1-B)

$$
\begin{gathered}
P(W \leq w)= \begin{cases}1 & w>0 \\
\frac{(2+w)^{2}}{4} & -2 \leq w \leq 0 \\
0 & w<-2\end{cases} \\
f_{W}(w)= \begin{cases}1+\frac{w}{2} & -2 \leq w \leq 0 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

SOLUTION 2-A) Using counting arguments $P($ no right card $)=\frac{9}{24}$ so $P($ at least one card match $)=\frac{15}{24}$.

SOLUTION 2-B-i)

$$
\alpha_{n}=\frac{1}{n!}, \quad n \geq 1
$$

To get to this result notice that the following identity concerning the number of permutations holds: $n!=\#(n$ cards match, n clients $)+\#(n-1$ cards match, n clients $)+\cdots+\#(0$ cards match, n clients $)$ Define $G_{q}=\#(0$ cards match, q clients $)$ for $q \geq 1$, then for $1 \leq m<n$ we have

$$
\#(m \text { cards match, } \mathrm{n} \text { clients })=\binom{n}{m} G_{n-m}
$$

Dividing the first identity by n ! and from the above, we get:

$$
\begin{gathered}
1=\frac{1}{n!}+\binom{n}{n-1} \frac{G_{1}}{n!}+\binom{n}{n-2} \frac{G_{2}}{n!}+\cdots+\binom{n}{1} \frac{G_{n-1}}{n!}+\frac{G_{n}}{n!} \\
1=\frac{1}{n!}+\frac{1}{(n-1)!} G_{1}+\frac{1}{(n-2)!} \frac{G_{2}}{2!}+\cdots+\frac{G_{n-1}}{(n-1)!}+\frac{G_{n}}{n!}
\end{gathered}
$$

We conclude by noticing that $P_{n}=\frac{G_{n}}{n!}, \quad n \geq 1$.
SOLUTION 2-B-ii) Clearly the limit cannot be 0 nor 1 . The limit is e^{-1}.

SOLUTION 3-A)

$$
P\left(Z_{\text {min }}>z\right)=P\left(X_{1}>z\right) \cdots P\left(X_{N}>z\right)= \begin{cases}e^{-N \lambda z} & z \geq 0 \\ 0 & z<0\end{cases}
$$

This gives $f_{Z_{\text {min }}}(z)=N \lambda e^{-N \lambda z}$ for $z \geq 0$ and $E\left[Z_{\text {min }}\right]=\frac{1}{N \lambda}$.
SOLUTION 3-B) Using a similar method $P\left(Z_{\max } \leq z\right)=\left[1-e^{-\lambda z}\right]^{N}$ for $z \geq 0$ and $f_{Z_{\max }}(z)=$ $\lambda N\left[1-e^{-\lambda z}\right]^{N-1} e^{-\lambda z}$ for $z \geq 0$.

