
SOFTWARE – Ph.D. Qualifying Exam Fall 2018
(i) (6 pts.)

Consider the following C program, which consists of two function definitions including the
main function.

#include <stdio.h>

void f1(int *x, int j, int k) {
 int v = (*x);
 if (k > 0) {
 printf(".");
 } else {
 k = 1;
 }
 printf("%d", v);
 if (v >= 0) {
 x++;
 f1(&(x[j]), j, k);
 }
}

int main(void) {
 int values[] = {2, -3, 7, 4, 2, 5, -6,
 -5, 8, 4, -7, -5, -2, -100};

 f1(values, 1, 0);
 printf("\n---\n");
 f1(values, 2, 0);
 printf("\n---\n");
 f1(values, 3, 0);
 return 0;
}

Show the complete output as it appears on standard output. Show all work, and clearly indicate
your solution. Show your work and your solution for this problem only on this page and (if more
space is needed) the next page.

In case of an illegal dereferencing of a pointer (e.g., dereferencing of an uninitialized pointer,
null pointer, or pointer that goes beyond the boundaries of an array), show all of the output from
the printf calls that are executed up to the point just before the illegal pointer dereference, and
then write “illegal pointer operation” on the following line.

This page is reserved as extra space for working on and writing your solution to Question
(i).

(ii) (4 pts.)
Consider the following C program, which consists of two function definitions including the
main function.

#include <stdio.h>
#include <ctype.h>
#define SIZE (27)

int f(char *s) {
 int counts[SIZE];
 int i = 0, M = 0, N = 0;
 int val = 0, index = 0;
 char c = '\0';

 for (i = 0; i < SIZE; i++) {
 counts[i] = 0;
 }

 for (i = 0; s[i] != '\0'; i++) {
 c = s[i];
 if (islower(c)) {
 index = c - 'a';
 (counts[index])++;
 } else if (isupper(c)) {
 index = c - 'A';
 (counts[index])++;
 } else {
 (counts[SIZE - 1])++;
 }
 }

 for (i = 0; i < SIZE; i++) {
 val = counts[i];
 if (val > M) {
 M = val;
 N = 1;
 } else if (val == M) {
 N++;
 }
 }

 printf("M: %d, N: %d\n", M, N);

 return 0;
}

int main(void) {
 f("Hello, how are you?\n");
 f("Great!");
 f("Maryland Terrapins");
 f("Score: 122 - 108\n");
 return 0;
}

Problem 2 continued: Show the complete output as it appears on standard output. Show all work,
and clearly indicate your solution. Show your work and your solution for this problem only on
this page and (if more space is needed) the previous page.

In case of an illegal dereferencing of a pointer (e.g., dereferencing of an uninitialized pointer,
null pointer, or pointer that goes beyond the boundaries of an array), show all of the output from
the printf calls that are executed up to the point just before the illegal pointer dereference, and
then write “illegal pointer operation” on the following line.

(iii) (6 pts.)

Consider the following C program, which consists of a struct declaration, and three function
definitions, including the main function.

#include <stdio.h>
#include <stdlib.h>

struct elem {
 int val;
 struct elem *next;
};

void add_two(struct elem **h, int v1, int v2) {
 struct elem *t1 = NULL, *t2 = NULL;
 struct elem *start = NULL, *end = NULL;
 struct elem *p = NULL, *q = NULL;

 t1 = malloc(sizeof(struct elem));
 t2 = malloc(sizeof(struct elem));
 t1->val = v1;
 t2->val = v2;
 t1->next = NULL;
 t2->next = NULL;

 if (v1 > v2) {
 start = t2;
 end = t1;
 } else {
 start = t1;
 end = t2;
 }
 start->next = (*h);
 (*h) = start;

 for (p = start; p != 0; p = p->next) {
 q = p;
 }
 q->next = end;
}

void disp(struct elem *h) {
 int i = 0;
 struct elem *p = NULL;

 for (p = h; p != NULL; p = p->next) {
 if (p != h) {
 printf(", ");
 }
 printf("%d", p->val);
 }
 printf("\n");
}

int main(void) {
 struct elem *data = NULL;
 int values[] = {8, 4, 12, 3, 5, -5, 8, 7, 2, 1};
 const int count = 10;
 const int start = 4, offset = 2;
 int i = start;

 while ((i != start) || (data == NULL)) {
 add_two(&data, values[i], values[i + 1]);
 disp(data);
 i = ((i + offset) % count);
 }
 return 0;
}

Show the complete output as it appears on standard output. Show all work, and clearly indicate
your solution. Show your work and your solution for this problem only on this page and (if more
space is needed) the previous page.

In case of an illegal dereferencing of a pointer (e.g., dereferencing of an uninitialized pointer,
null pointer, or pointer that goes beyond the boundaries of an array), show all of the output from
the printf calls that are executed up to the point just before the illegal pointer dereference, and
then write “illegal pointer operation” on the following line.

(iv) (4 pts.)

Write a function that takes a double value x, integer value n, and pointer p as arguments, and sets
the value pointed to by p to be equal to the result of the following cosine power series
computation.

The prototype of the function is as follows:

void cosine_function(double x, double *p, int n);

Your solution should contain no function calls — i.e., no calls to any standard C library
functions (including functions from math.h) or to any user-defined functions.

No error checking is required in the function.

Develop a complete C code implementation of the function cosine_function.

Show all work, and clearly indicate your solution. Show your work and your solution for this
problem only on this page and (if more space is needed) the next page

Shuvra S. Bhattacharyya
2311 A. V. Williams Bldg.
Dept. of Electrical and Computer Engineering
College Park, Maryland 20742
+1 (301) 405-3638 TEL

+1 (301) 314-9281 FAX

ssb@umd.edu (EMAIL)
http://www.ece.umd.edu/ ssb/ (URL)

November 20, 2010

Recipient Address 1
Recipient Address 2
Recipient Address 3

To Whom it May Concern:

1 −

x
2

2! + x
4

4! −
x
6

6! + . . . + (−1)n x
2n

(2n)!

Sincerely,

Shuvra S. Bhattacharyya
Professor

This page is reserved as extra space for working on and writing your solution to Question
(iv).

Software	Qualifying	Exam	Solutions	
Fall	2018	
Dept.	of	ECE,	University	of	Maryland,	College	Park	
5/31/2018	
	

Problem	1:	

2.7.2.-6

2.4.-6

2.2.8.-2
	

Problem	2:	

M: 6, N: 1
M: 1, N: 6
M: 3, N: 2
M: 12, N: 1
	

Problem	3:	

-5, 5
7, -5, 5, 8
1, 7, -5, 5, 8, 2
4, 1, 7, -5, 5, 8, 2, 8
3, 4, 1, 7, -5, 5, 8, 2, 8, 12	
	 	

Problem	4:	

void cosine_function(double x, int n, double *p) {
 double term = 1;
 double factor = 1;
 double factorial_update = 1;
 double result = 1;
 int i = 0;
 double square = x * x;

 for (i = 1; i <= n; i++) {
 factor *= (-1);
 factorial_update = (2 * i - 1) * (2 * i);
 term *= square / factorial_update;
 result += (term * factor);
 }

 (*p) = result;
}

