Basic Mathematics - Ph.D. Written Qualifying Examination, Spring 2018

- (1) (7 pts.) Find the general solution of the following simultaneous differential equations:
 - (a) $\frac{dx}{dt} = x 2y$, $\frac{dy}{dt} = y 2x$ (3 pts.) (b) $\frac{d^2x}{dt^2} = x - y - \frac{d^2y}{dt^2} = y - x$ (4 pts.)

(b)
$$\frac{d^2 x}{dt^2} = x - y$$
, $\frac{d^2 y}{dt} = y - x$ (4 pts.)

(2) (6 pts.) Evaluate the integral

$$\int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} \frac{x^2 dx dy}{\left(1 + \sqrt{x^2 + y^2}\right)^5}$$

(3) (7 pts.) Let $\hat{\mathbf{u}}$ be a unit vector on the Cartesian plane. For an arbitrary vector \mathbf{v} , let \mathbf{w} be the reflection (mirror image) of \mathbf{v} across the line containing $\hat{\mathbf{u}}$. Show that

$$\mathbf{w} = 2(\hat{\mathbf{u}} \bullet \mathbf{v})\hat{\mathbf{u}} - \mathbf{v}$$

Writing $\mathbf{w} = \mathbf{R}\mathbf{v}$ and taking the Cartesian coordinates of $\hat{\mathbf{u}}$ and \mathbf{v} to be respectively (u_1, u_2) and (v_1, v_2) , find the components of the matrix \mathbf{R} . Verify that $\mathbf{R}^2 = \mathbf{I}$, where \mathbf{I} is the identity matrix.

Solutions

(1) (a) From first equation
$$y = \frac{x}{2} - \frac{1}{2}\frac{dx}{dt}$$
. Substitute in second equation $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} - 3x = 0$.

This can be written as $D^2 - 2D - 3 = (D - 3)(D + 1)$. D = 3, -1

General solution is $x = Ae^{-t} + Be^{3t}$ and $y = Ae^{-t} - Be^{3t}$

- (b) From first equation $y = x \frac{d^2 x}{dt^2}$. Substitute in second equation $\frac{d^4 x}{dt^4} 2\frac{d^2 x}{dt^2} = 0$
- $D^{4} 2D^{2} = D^{2} (D^{2} 2) = 0. D = \pm \sqrt{2}, 0. \text{ General solution is } x = At + B + Ce^{\sqrt{2}t} + De^{-\sqrt{2}t}$ $y = At + B Ce^{\sqrt{2}t} De^{-\sqrt{2}t}$
- (2) Substitute $x = r\cos(\theta)$, $y = r\sin(\theta)$ switch infinite domain of integration to polar coordinates. Integral becomes $\int_{0}^{\infty} \int_{0}^{2\pi} \frac{r^{3}\cos^{2}(\theta)drd\theta}{(1+r)^{5}} = \int_{0}^{\infty} \int_{0}^{2\pi} \frac{r^{3}(1+\cos(2\theta))drd\theta}{2(1+r)^{5}} = \pi \int_{0}^{\infty} \frac{r^{3}}{(1+r)^{5}} dr$

Substitute 1 + r = x. Integral becomes $\pi \int_{1}^{\infty} \frac{(x-1)^3}{x^3} dx = \pi \int_{1}^{\infty} \frac{1}{x^2} - \frac{3}{x^3} + \frac{3}{x^4} - \frac{1}{x^5} dx$

- $= \left[\pi \left(-\frac{1}{x} + \frac{3}{2x^2} \frac{1}{x^3} + \frac{1}{4x^4} \right) \right]_1^\infty = \frac{\pi}{4}$
- (3) $\mathbf{v} \cdot \hat{\mathbf{u}} = |\mathbf{v}| \cos(\theta)$ where θ is the angle between the two vectors. Also $\mathbf{w} \cdot \hat{\mathbf{u}} = |\mathbf{w}| \cos(\theta)$. All three vectors are in the same plane.
- $\mathbf{v} + \mathbf{w} = 2 |\mathbf{v}| \hat{\mathbf{u}} \cos(\theta)$ gives $\mathbf{w} = 2 (\hat{\mathbf{u}} \bullet \mathbf{v}) \hat{\mathbf{u}} \mathbf{v}$ Q.E.D.

Substitute $\hat{\mathbf{u}}$, \mathbf{v} as column vectors $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$, $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ note that $u_1^2 + u_2^2 = 1$ gives

$$\mathbf{R} = \begin{pmatrix} u_1^2 - u_2^2 & 2u_1u_2 \\ 2u_1u_2 & u_2^2 - u_1^2 \end{pmatrix} \text{ and it follows that } \mathbf{R}^2 = \mathbf{I}. \mathbf{Q}. \mathbf{E}. \mathbf{D}.$$