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(1) (7 pts.)  Find the general solution of the following simultaneous differential equations: 
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(2) (6 pts.)  Evaluate the integral 

 ( )∫ ∫
∞

∞−

∞

∞− ++
5

22

2

1 yx

dxdyx

 

(3) (7 pts.)  Let û  be a unit vector on the Cartesian plane.  For an arbitrary vector v, let w be the 
reflection (mirror image) of v across the line containing û .  Show that 

( ) vuvuw −•= ˆˆ2  

Writing  w = Rv  and taking the Cartesian coordinates of û  and v to be respectively (u1,u2) and 
(v1,v2), find the components of the matrix R. Verify that R2 = I, where I is the identity matrix. 

  



Solutions 

(1) (a) From first equation 
dt
dxxy
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This can be written as ( )( )13322 +−=−− DDDD . 1,3 −=D  

General solution is tt BeAex 3+= − and tt BeAey 3−= −  
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( ) 022 2224 =−=− DDDD . 0,2±=D . General solution is 
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(2) Substitute ( ) ( )θθ sin,cos ryrx == switch infinite domain of integration to polar coordinates. 

Integral becomes 
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Substitute xr =+1 . Integral becomes 
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(3) )cos(ˆ θvuv =• where θ is the angle between the two vectors. Also )cos(ˆ θwuw =• . All 

three vectors are in the same plane. 

( )θcosˆ2 uvwv =+  gives ( ) vuvuw −•= ˆˆ2 Q.E.D. 

Substitute vu,ˆ as column vectors 
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R  and it follows that R2=I. Q.E.D. 


