Electromagnetics - Ph.D. Written Qualifying Examination, Spring 2018

Problem 1 (6 pts)

There are two concentric conducting cylinders that are infinitely long. The inner radius is a and the outer radius is b. The electric potential is $\mathrm{V}(a)=0 \mathrm{~V}$ and $\mathrm{V}(b)=\mathrm{V}_{0}$. The space between the conductors is filled with air AND a uniform volume charge density $\rho_{o}\left(C / m^{3}\right)$. Find $V(r)$ between the conducting cylinders.

Problem 2 (6 pts)
A disk with a radius of $b=5 \mathrm{~cm}$ is centered at the origin in the $\mathrm{z}=0$ plane. The disk has a surface current density of $\vec{J}_{s}=2 \cos (\varphi) \hat{\varphi}(\mathrm{A} / \mathrm{m})$. Find the magnetic field intensity 10 cm above the center of the disk (at $\mathrm{z}=10 \mathrm{~cm} ; \mathrm{x}=0=\mathrm{y}$).

Problem 3 (3 pts)
What is the Lorentz gauge and why is it useful / important?
Problem 4 (5 pts)
A generic waveguide ($\mathrm{a}=2 \mathrm{~cm} ; \mathrm{b}=1 \mathrm{~cm}$) is filled with a lossy dielectric with $\varepsilon_{\mathrm{r}}=2+0.1 j$. What is the cutoff frequency of the fundamental mode in the waveguide and what is the attenuation of the waveguide (in dB / m) due only to the dielectric when a wave is traveling in the guide at a frequency 50% higher than the fundamental cutoff frequency?

You may find these formulas useful:
Cylindrical coordinates: $\vec{\nabla} V=\hat{a}_{r} \frac{\partial V}{\partial r}+\hat{a}_{\varphi} \frac{1}{r} \frac{\partial V}{\partial \varphi}+\hat{a}_{z} \frac{\partial V}{\partial z}$
$\vec{\nabla} \cdot \vec{A}=\frac{1}{r} \frac{\partial\left(r A_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial A_{\varphi}}{\partial \varphi}+\frac{\partial A_{z}}{\partial z} ; \quad \vec{\nabla} \times \vec{A}=\frac{1}{r}\left|\begin{array}{ccc}\hat{a}_{r} & r \hat{a}_{\varphi} & \hat{a}_{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ A_{r} & r A_{\varphi} & A_{z}\end{array}\right|$
$\nabla^{2} V=\frac{1}{r} \frac{\partial(r \partial V / \partial r)}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \varphi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$

Electromaquetesno Solutrose.
or $V(r)=V_{0}+\frac{\left(b^{2}-r^{2}\right)}{4 \varepsilon_{0}} p_{0}-\left[V_{0}+\frac{\left(b^{2}-a^{2}\right) p_{0}}{4 \varepsilon_{0}}\right] \frac{\ln (r / b)}{\ln (a / b)}$
Problem 1 pts)
There are two concentric conducting cylinders that are infinitely long. The inner radius is a and the outer radius is b. The electric potential $\mathrm{V}(a)=0 \mathrm{~V}$ and $\mathrm{V}(b)=\mathrm{V}_{0}$. The space between the conductors is filled with air AND a uniform volume charge density $\rho_{0}\left(C / \mathrm{m}^{3}\right)$. Find $V(r)$ between the conducting cylinders.

$$
\begin{aligned}
& \nabla^{2} V=-\rho_{0} / \varepsilon_{0}=\frac{1}{r} \frac{d}{d r}\left(r \frac{d V}{d r}\right) \begin{array}{c}
\text { since } V \text { cannot } \\
\text { deperdon port }
\end{array} \\
& \Rightarrow r \frac{d v}{d r}=\frac{-v^{2} \rho_{0}}{\partial \varepsilon_{0}}+c_{1} \quad \xi \vec{E}=-\frac{d v}{c r}=\frac{d \rho_{0}}{2 \varepsilon_{0}}-\frac{c_{1}}{r} \\
& \Rightarrow \left\lvert\, \overline{V(r)}=\frac{-r^{2} p_{0}+c_{1} \ln (r / a)+c_{2} \text { 每points to here }}{4 \varepsilon_{0}}\right. \\
& V(a)=0 \Rightarrow-\frac{a^{2} \rho_{0}}{4 \varepsilon_{0}}+c_{2}=0 \text { or } c_{2}=\frac{a^{2} p_{0}}{4 \varepsilon_{0}}+2 \\
& \left\{V(r)=\frac{\left(q^{2}-r^{2}\right) \rho_{0}}{4 \varepsilon_{0}}+c_{1} \ell_{n}(t / a)\right. \\
& V(b)=V_{0}=\frac{\left(a^{2}-b^{2}\right) p_{0}}{4 \varepsilon_{0}}+c_{1} \ln (b / a) \\
& C_{1}=\left[V_{0}-\frac{\left(a^{2}-b^{2}\right) \rho_{0}}{4 \varepsilon_{0}}\right] / \ln (b / a) \\
& V(r)=\frac{\left(a^{2}-r^{2}\right)}{4 \varepsilon_{0}} p_{0}+\left[V_{0}-\frac{\left(a^{2}-b^{2}\right)}{4 \varepsilon_{0}} \rho_{0}\right] \frac{\ln (r / a)}{\ln (b / a)} \\
& X c \quad \vec{E}(a)=\frac{a p_{0}}{2 \varepsilon_{0}}-\frac{c_{1}}{a}=0 \Rightarrow c_{1}=\frac{a^{2} \rho_{0}}{2 \varepsilon_{0}}=\frac{2 a^{2} f_{0}}{4 \varepsilon_{0}}
\end{aligned}
$$

Extra Credit (3 points) Find an expression for ρ_{0} so that the electric field is zero at $\mathrm{r}=a$. or $V_{0}-\frac{\left(a^{2}-b^{2}\right) \rho_{0}}{4 \varepsilon_{0}}=\frac{2 a^{2} \rho_{0}}{4 \varepsilon_{0}} \ln (b / a)$
or

$$
V_{0}=\frac{\rho_{0}}{4 \varepsilon_{0}}\left[2 a^{2} \ln (b / a)+\dot{a}^{2}-b^{2}\right]
$$

or $\quad \rho_{0}=4 V_{0} \varepsilon_{0} /\left[2 a^{2} \ln (b / a)+a^{2}-b^{2}\right]$

Problem 2(8 pts)
A disk with a $b=5 \mathrm{~cm}$ radius is centered at the origin in the $z=0$ plane. The disk has a surface current density of $\vec{J}_{s}=\cos (\varphi) \hat{\varphi}(\mathrm{A} / \mathrm{m})$. Find the magnetic field intensity 10 cm above the center of the disk (at $\mathrm{z}=10 \mathrm{~cm} ; \mathrm{x}=0=\mathrm{y}$).

nam

$$
=z_{0}{ }^{n} \underline{?}
$$

$$
\vec{H}(\vec{r}) \cdot \frac{1}{4 r} \int_{5} \frac{\vec{J}_{5} \times\left(\vec{r}-\vec{r}^{\prime}\right)}{1 \vec{r}-\left.\vec{r}^{\prime}\right|^{3}} d s \int_{\vec{r}^{\prime}}^{\vec{r}^{\prime}}=10 \hat{z} \mathrm{~cm} . \hat{r}
$$

$$
\frac{\int_{n}^{s}}{d s=r^{\prime} d r^{\prime} d \varphi}
$$

$$
\vec{H}(\vec{r})=\frac{\pi}{2} \hat{x}\left(1-\frac{1}{\sqrt{1+1 b / 20)^{2}}}\right)=\frac{1}{2} \hat{x}\left(1-\frac{1}{\sqrt{1.25}}\right)
$$

$[\vec{H}(\vec{v})=0.053 \mathrm{~A} / \mathrm{m} \quad(0.053 \mathrm{~A} / \mathrm{m})$ it you had calewlater

Proklem ${ }^{\# 3}$
Lorerte Gange: $\vec{\nabla} \cdot \vec{A}+\varepsilon \mu \frac{\partial U}{\partial t}=0$
Decouples differentiul equations for vecter (\vec{A}) and scaler (U) potentits.

$$
\begin{aligned}
& \alpha_{d}=\frac{8.686 \omega \tan f}{2 c \sqrt{1-\omega_{c}^{2} / \omega^{2}}}=\frac{8.686\left(\frac{\omega}{\omega_{c}}\right)\left(\frac{0.1}{g}\right) \omega_{c}}{2 \times 3 \times 10^{8} \sqrt{\left.1-\omega_{c} / \omega\right)^{2}}} \\
& \alpha_{d}=\frac{8.686(1.5)(\cos) \frac{d}{29} 2 \pi}{2 \times C \sqrt{1-(1 / .5)^{2}}}=\frac{8.686(0.5) 2 \pi}{80(.02) \sqrt{1-(1 / .5)^{2}}} \mathrm{~dB} / \mathrm{m} \\
& \alpha_{d}=8.686\left(\frac{1.5}{1.6}\right) \frac{d \mathrm{~s}}{\sqrt{5} \pi} \frac{d \mathrm{~s}}{\mathrm{~h}} \quad \text { (or } 68.6 .5 \mathrm{ds} / \mathrm{m} \\
& \text { if calculazar.s } \\
& \text { had been allunet) }
\end{aligned}
$$

