Linear Systems and Signals - Ph.D. Qualifying Exam, January 2018

Part 1 (6 pts.)

Consider the linear-time invariant system (operating in discrete time) whose impulse response sequence is given by

$$
h[n]=\delta[n]-5 \delta[n-1]+4 \delta[n-2]-5 \delta[n-3]+3 \delta[n-4]
$$

If the input $x[n]$ to the system is periodic with period equal to four samples, is the output $y[n]$ also periodic? If so, what is the fundamental (i.e., least) period, in samples?

Part 2 (7 pts.)

Let

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} e^{j k t}
$$

be the standard complex Fourier series expansion of a periodic signal (of period equal to 2π) in continuous time.
(2a) (4 pts.) If $S_{k}=3^{-|k|}$ for all indices k, show that

$$
s(t)=\frac{c}{a+b \cos t}
$$

and determine the (real) values a, b and c.
(2b) (3 pts.) With a, b and c as found above, determine the complex Fourier series coefficients $\left\{V_{k}\right\}$ of the signal

$$
v(t)=\frac{2 c \sin t}{a+b \cos t}
$$

simplifying your answer as much as possible.

Part 3 (7 pts.)

Consider the causal linear time-invariant system described by the differential equation

$$
3 \frac{d^{2} y(t)}{d t^{2}}+10 \frac{d y(t)}{d t}+3 y(t)=\frac{d x(t)}{d t}-2 x(t)
$$

(3a) (3 pts.) Determine the zeros and poles of the system's transfer function $H(s)$. Is the system stable in the bounded-input, bounded-output (BIBO) sense?
(3b) (4 pts.) Let the input to the system be the negative-time signal

$$
x(t)=e^{2 t} u(-t)
$$

Determine the resulting output $y(t)$. Does the product $x(t) y(t)$ have a particularly simple form?

Part 1

If the input to a LTI system is periodic, then so is the output.
The fundamental period of $\mathrm{y}[\mathrm{n}]$ is either the same as, or a submultiple of, that of $\mathrm{x}[\mathrm{n}]$.

In this case, the period of $x[n]$ is four samples. Letting

$$
x[0: 3]=(a, b, c, d),
$$

we have

$$
\begin{aligned}
& y[0]=a-5^{*} d+4^{*} c-5^{*} b+3 * a=4 * a-5^{*} d+4^{*} c-5^{*} b \\
& y[1]=b-5^{*} a+4^{*} d-5^{*} c+3 * b=-5^{*} a+4^{*} b-5^{*} c+4^{*} d \\
& y[2]=c-5^{*} b+4^{*} a-5^{*} d+3^{*} c=4 a-5^{*} d+4^{*} c-5^{* b} \\
& y[3]=d-5^{*} c+4^{*} b-5^{*} a+3 * d=-5^{*} a+4^{* b}-5^{*} c+4^{*} d
\end{aligned}
$$

Since $y[0]=y[2]$ and $y[1]=y[3]$, the output has fundamental period equal to two samples.

Part 2

$$
\begin{align*}
\mathrm{s}(\mathrm{t})= & -1+\operatorname{sum}\left\{3 \wedge(-\mathrm{k}) * \exp \left(\mathrm{j}^{*} \mathrm{k}^{*} \mathrm{t}\right) \text { over } \mathrm{k}>=0\right\} \\
& +\operatorname{sum}\left\{3 \wedge(-\mathrm{k}) * \exp \left(-\mathrm{j}^{*} \mathrm{k}^{*} \mathrm{t}\right) \text { over } \mathrm{k}>=0\right\} \\
= & -1+\operatorname{inv}\left(1-\exp \left(\mathrm{j}^{*} \mathrm{t}\right) / 3\right)+\operatorname{inv}\left(1-\exp \left(-\mathrm{j}^{*} \mathrm{t}\right) / 3\right) \\
= & -1+2 *(1-\cos (\mathrm{t}) / 3) /(1+1 / 9-2 * \cos (\mathrm{t}) / 3) \\
= & 4 /\left(5-3^{*} \cos (\mathrm{t})\right) \tag{2b}
\end{align*}
$$

$$
\begin{aligned}
v(t) & =2 * s(t) * \sin (t) \\
& =(-j) * s(t) * \exp (j * t)+j * s(t) * \exp (-j * t)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& V[k]=(-j)^{*}(S[k-1]-S[k+1]) \\
& \quad=j^{*}\left(3^{\wedge}(-|k+1|)-3^{\wedge}(-|k-1|)\right)
\end{aligned}
$$

i.e.,
$\mathrm{V}[\mathrm{k}<0]=-\mathrm{j}^{*}(8 / 3)^{*}(3 \wedge \mathrm{k})$
$\mathrm{V}[0]=0$
$\mathrm{V}[\mathrm{k}>0]=\mathrm{j} *(8 / 3)^{*}(1 / 3) \wedge \mathrm{k}$

Part 3
(3a)

$$
H(s)=(s-2) /\left(3 * s^{\wedge} 2+10 * s+3\right)
$$

Zeros at $s=2,|s|=$ infty; poles at $s=-1 / 3,-3$
System is causal, hence ROC(H) : Real $\{\mathrm{s}\}>-1 / 3$
ROC includes imaginary axis, so system is BIBO stable

$$
X(s)=-1 /(s-2), \operatorname{ROC}(X): \operatorname{Real}\{s\}<2
$$

ROC(H) and ROC(X) have nonempty intersection, hence $x(t)$ is acceptable as input.

$$
Y(s)=X(s) * X(s)=-1 /\left(3 * s^{\wedge} 2+10 * s+3\right)
$$

with $\operatorname{ROC}(\mathrm{H}): \operatorname{Real}\{\mathrm{s}\}>-1 / 3$ (note pole-zero cancelation).

$$
Y(s)=(1 / 8) /(s+3)-(1 / 8) /(s+1 / 3)
$$

thus

$$
\mathrm{y}(\mathrm{t})=(1 / 8) *(\exp (-3 * t)-\exp (-\mathrm{t} / 3)) * u(\mathrm{t})
$$

Note that $\mathrm{x}(\mathrm{t}) * \mathrm{y}(\mathrm{t})=0$ except $($ trivially $)$ at $\mathrm{t}=0$.

