PROBABILITY - Ph.D. Qualifying Exam Spring 2018

Part 1: Consider that a message with N bits is stored in a noisy memory device that flips each bit with probability p. Flip events are independent across bits. Let X be the random variable that quantifies the total number of bit flips.
A) (3 points) Assume that $E[X]=5$ and $N=10$, where $E[X]$ represents the expectation or mean value of X. Determine $P(X=2)$ and $E\left[X^{2}\right]$.
B) (4 points) Suppose that $N=10^{3}$ and that information can be correctly recovered from the memory when at most 2 bits are flipped. An error occurs when 3 or more bits are flipped. The cost of a memory chip is given by $2 \times 10^{3} e^{-N p}$ and the cost of making an error is 10^{3}. Choose p that minimizes the expected total cost given by $10^{3}\left(P(\right.$ error $\left.)+2 e^{-N p}\right)$. (Hint:You should resort to the Poisson-approximation to solve this problem.)

Part 2: Consider that a bucket contains N components that are labeled from 1 to N. Components are taken uniformly randomly from the bucket without replacement. Consider that you have taken t components and placed them in a shopping bin.
A) (4 points) What is the probability that the component with label 1 is in the bin? Give a formula that depends on t and N, for $1 \leq t \leq N$.
B) (2 points) What is the probability that all the components in the bin have label less than or equal to t ? Give a formula that depends on t and N, for $1 \leq t \leq N$.

Part 3: Let W_{1} and W_{2} be two independent random variables that are uniformly distributed between -1 and 1.
A) (4 points) Sketch and determine explicitly $P\left(W_{1}+\alpha \geq W_{2}\right)$ as a function of α.
B) (3 points) Assume that $Z=\max \left\{W_{1}, W_{2}\right\}$. Determine the probability density function of Z and compute $E[Z]$.

SOLUTIONS

SOLUTION 1-A) $p=0.5, P(X=2)=45 \times \frac{1}{1024}, \operatorname{Var}[X]=10 \times 0.5^{2}, E\left[X^{2}\right]=\operatorname{Var}[X]+E[X]^{2}=$ 27.5

SOLUTION 1-B) The cost can be written as $10^{3}\left(1-e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2}\right)+2 e^{-\lambda}\right)$ in terms of $\lambda=n p$. Take derivative to get $10^{3} e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2}-(\lambda+1)-2\right)$. The derivative is zero when $\lambda=2$, or equivalently $p=2 \times 10^{-3}$.

SOLUTION 2-A) $\frac{\binom{N-1}{t-1}}{\binom{N}{t}}=\frac{t}{N}$
2-B) $\frac{1}{\binom{N}{t}}$
SOLUTION 3-A) $P\left(W_{1}+\alpha \geq W_{2}\right)= \begin{cases}0 & \alpha \leq-2 \\ \frac{(\alpha+2)^{2}}{8} & -2<\alpha \leq 0 \\ 1-\frac{(\alpha-2)^{2}}{8} & 0<\alpha \leq 2 \\ 1 & \alpha>2\end{cases}$

SOLUTION 3-B)

$$
P(Z \leq z)=P\left(W_{1} \leq z\right) P\left(W_{2} \leq z\right)= \begin{cases}0 & z<-1 \\ 1 & z \geq 1 \\ \frac{1}{4}(z+1)^{2} & \text { otherwise }\end{cases}
$$

So, the PDF is the derivative of the CDF:

$$
f_{Z}(z)= \begin{cases}0 & |z| \geq 1 \\ \frac{1}{2}(z+1) & \text { otherwise }\end{cases}
$$

So, $\left.E[z]=0.5 \int_{-1}^{1} z^{2}+z d z=0.5\left(\frac{1}{3} z^{3}+\frac{1}{2} z^{2}\right) \right\rvert\,{ }_{-1}^{1}=\frac{1}{6}(1-(-1))=\frac{1}{3}$

