
SOFTWARE – Ph.D. Qualifying Exam Spring 2018
(i) (5 pts.)

Consider the following C program which consists of two function definitions including the main
function.

#include <stdio.h>

int g(int z) {
 int y = 0;
 const int k = 3;

 printf("z = %d\n", z);

 if (z <= 0) {
 return k * (z + 2);
 } else {
 y = g(z - 1) + g(z - 2);
 return y;
 }
}

int main(void) {
 int arg = 3;
 int result = 0;

 result = g(arg);

 printf("result = %d\n", result);

 return 0;
}

Show the complete output as it appears on standard output. Show all work, and clearly indicate
your solution. Show your work and your solution for this problem only on this page and (if more
space is needed) the next page.

In case of an illegal dereferencing of a pointer (e.g., dereferencing of an uninitialized pointer,
null pointer, or pointer that goes beyond the boundaries of an array), show all of the output from
the printf calls that are executed up to the point just before the illegal pointer dereference, and
then write "illegal pointer operation" on the following line.

This page is reserved as extra space for working on and writing your solution to Question
(i).

(ii) (6 pts.)
Consider the following C program, which consists of three function definitions including the
main function.

#include <stdio.h>
#include <stdlib.h>

#define LEN 9
#define OFFSET 5

typedef struct node {
 int val;
 struct node *next;
} node;

void insert_one(node **h, node *e) {
 int v = e->val;
 node *p = NULL;

 if (v < -1) {
 e->next = (*h)->next->next;
 (*h)->next->next = e;
 } else if (v > 1) {
 e->next = (*h);
 (*h) = e;
 } else {
 for (p = (*h); p->next != NULL; p = p->next);
 e->next = p->next;
 p->next = e;
 }
}

void show_all(node *h) {
 node *p = NULL;

 for (p = h; p != NULL; p = p->next) {
 printf("<%d>", p->val);
 }
 printf("\n");
}

int main(void) {
 node n1 = {7, NULL};
 node n2 = {3, &n1};
 node n3 = {5, &n2};
 node *h = &n3;
 int values[] = {7, -4, 9, -1, 0, 0, 7, -8, 12};
 int i = 0;
 node *new = NULL;

 show_all(h);
 show_all(&n1);

 for (i = 0; i < LEN; i+=2) {
 new = malloc(sizeof(node));
 new->val = values[(i + OFFSET) % LEN];
 insert_one(&h, new);
 }

 show_all(h);
 show_all(&n2);
}

Show the complete output as it appears on standard output. Show all work, and clearly indicate
your solution. Show your work and your solution for this problem only on this page and (if more
space is needed) the previous page.

In case of an illegal dereferencing of a pointer (e.g., dereferencing of an uninitialized pointer,
null pointer, or pointer that goes beyond the boundaries of an array), show all of the output from
the printf calls that are executed up to the point just before the illegal pointer dereference, and
then write "illegal pointer operation" on the following line.

(iii) (5 pts.)

Consider the following C program.

#include <stdio.h>
#include <string.h>
#include <ctype.h>

#define SIZE 10

int main(void) {
 char src1[] = "xya$%fsp\\my";
 char src2[] = "\\m%psdf22nnz";
 char dst[SIZE] = "123456789";
 int i = 0;
 const int stride = 2;

 for (i = 0; i < SIZE; i += stride) {
 if (isalpha(src1[i])) {
 dst[i] = src2[i];
 } else {
 dst[i] = src1[i];
 src1[i] = '\0';
 }
 }

 printf("%s\n", dst);
 printf("len1 = %d\n", (int)(strlen(src1)));
 printf("len2 = %d\n", (int)(strlen(src2)));

 return 0;
}

Show the complete output as it appears on standard output. Show all work, and clearly indicate
your solution. Show your work and your solution for this problem only on this page and (if more
space is needed) the next page.

In case of an illegal dereferencing of a pointer (e.g., dereferencing of an uninitialized pointer,
null pointer, or pointer that goes beyond the boundaries of an array), show all of the output from
the printf calls that are executed up to the point just before the illegal pointer dereference, and
then write "illegal pointer operation" on the following line.

This page is reserved as extra space for working on and writing your solution to Question
(iii).

(iv) (4 pts.)

For this problem, we define the set of valid text characters as the set that consists of (1) all
alphabetic characters (lower case and upper case), (2) all characters that correspond to decimal
digits (0-9), (3) the space character, and (4) the underscore character. Write a C program that
inputs a line of text from standard input, and prints the line to standard output with all of the non-
valid text characters filtered out (removed). For example, if the input line is

Hello ^_^ How Are You?

then the output would be

Hello _ How Are You

Write the program to handle an input line that has at most 100 characters. If the input line has
more than 100 characters, then print a meaningful error message to standard error and exit
without printing anything to standard output. Use the putc utility to read the input text from
standard input.

Show your work and your solution for this problem only on this page, and (if more space is
needed) the next page.

This page is reserved as extra space for working on and writing your solution to Question
(iv).

Software	Qualifying	Exam	Solutions	
Spring	2018	
Dept.	of	ECE,	University	of	Maryland,	College	Park	
11/20/2018	
	

Problem	1:	

z = 3
z = 2
z = 1
z = 0
z = -1
z = 0
z = 1
z = 0
z = -1
result = 24

	

Problem	2:	

<5><3><7>
<7>
<9><7><5><3><-8><7><0><0>
<3><-8><7><0><0>

	

Problem	3:	

\2%4%6f8\
len1 = 4
len2 = 12
	
	 	

Problem	4:	

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>

#define MAXLEN 100

int main(void) {
 char line[MAXLEN + 1];
 int i = -1;
 char c = '\0';
 int done = 0;

 while (!done) {
 c = getc(stdin);
 if ((c == EOF) || (c == '\n')) {
 done = 1;
 } else {
 i++;
 if (i >= MAXLEN) {
 fprintf(stderr, "Line too long\n");
 exit(1);
 } else {
 line[i] = c;
 }
 }
 }
 line[++i] = '\0';

 for (i = 0; i < strlen(line); i++) {
 c = line[i];
 if (isalpha(c) || isdigit(c) ||
 (c == ' ') || (c == '_')) {
 printf("%c", c);
 }
 }
 printf("\n");
 return 0;
}

