Prof. Charalampos (Babis) Papamanthou

Spring 2018

ENEE 759F/CMSC 818C

Title: Blockchain and Cryptocurrency Technologies

Description: Decentralized cryptocurrencies and blockchain applications such as Bitcoin and Ethereum have emerged as a highly disruptive technology that enable, for example, monetary transactions and the execution of smart contracts without the control of a central authority. They have sparked the interest of of computer scientists, economists and policymakers and promise to revolutionize the way we think about our financial infrastructure. This graduate class will cover the technical background behind decentralized cryptocurrencies protocols and will introduce students to research on the security and privacy of blockchain technologies.

Books:

- (1) Bitcoin and Cryptocurrency Technologies http://press.princeton.edu/titles/10908.html
- (2) The science of blockchain

https://www.amazon.com/Science-Blockchain-Roger-Wattenhofer/dp/1522751831

Prerequisites: ENEE 457 or CMSC 414 or permission by instructor; Some programming background at the level of ENEE 150 or CMSC 216 is preferrable.

Grading Policy: The final grade will be computed based on a combination of 4 homeworks, a research project (to be completed in teams of two) and research paper presentations.

Tentative Topics to be Covered:

Week 1

Historical perspective: From centralized digital payment systems to blockchains and Bitcoin

research papers and readings

Untraceable Electronic Cash

Compact e-Cash

Bitcoin: A Peer-to-Peer e-Cash System

Week 2

Introduction to basic notions of cryptography and their use in Bitcoin (hash functions, message digests, commitments, digital signatures, blind signatures, Merkle trees, threshold signatures)

research papers and readings
Bitcoin cryptography
ECDSA signatures

Chapter 1 Bitcoin book

Week 3

Details of the Bitcoin protocol and research challenges

research papers and readings

SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies

The Bitcoin Backbone Protocol: Analysis and Applications

Analysis of the Blockchain Protocol in Asynchronous Networks

Bitcoin Developer Guide

https://eurocrypt2017.di.ens.fr/slides/A04-analysis-of-the-blockchain.pdf

Chapter 2 Bitcoin book Chapter 3 Bitcoin book

Week 4

Distributed consensus and mining

research papers and readings

<u>Distributed Systems, Failures, and Consensus</u>

Practical Byzantine Fault Tolerance

100 Impossibility Proofs For Distributed Computing

Honey Badger of BFT Protocols

Nonoutsourceable Scratch-Off Puzzles to Discourage Bitcoin Mining Coalitions

PermaCoin: Repurposing Bitcoin Work for Long-Term Data Preservation

Chapter 4 Bitcoin book Chapter 5 Bitcoin book

Week 5

Alternative consensus mechanisms (beyond proof of work)

research papers and readings

Thunderella: Blockchains with Optimistic Instant Confirmation

Algorand: Scaling Byzantine Agreements for Cryptocurrencies

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol

Snow White: Provably Secure Proofs of Stake

Chapter 8 Bitcoin book

Week 6

Altcoins and smart contracts

research papers and readings

Ethereum white paper

Ethereum yellow paper

The Ring of Gyges: Investigating the Future of Criminal Smart Contracts

Making Smart contracts smarter
Solidity tutorial and examples
Best practices for smart contract security
DAO exploit

Week 7

Attacks on decentralized cryptocurrencies

research papers and readings

The Miner's Dilemma

Majority is not Enough: Bitcoin Mining is Vulnerable Eclipse Attacks on Bitcoin's Peer-to-Peer Network

Stubborn Mining: Generalizing Selfish Mining and Combining with an Eclipse Attack

Bitcoin over Tor is not a good idea

The economics of Bitcoin Mining in the presence of adversaries

Information Propagation in the Bitcoin Network

Week 8

Scalability of decentralized cryptocurrencies

research papers and readings

BitcoinNG: A Scalable Blockchain Protocol

The Bitcoin Lightning Network

On Scaling Decentralized Blockchains

A Fast and Scalable Payment Network with Bitcoin Duplex Micropayment Channels

Week 9

Applications of blockchains in public key directories

research papers and readings

CONIKS: Bringing Key Transparency to End Users

Catena: Efficient Non-equivocation via Bitcoin

An empirical study of Namecoin and lessons for decentralized namespace design

IKP: Turning a PKI Around with Blockchains

Chapter 9 Bitcoin book

Week 10

Privacy on top of existing cryptocurrencies

research papers and readings

<u>TumbleBit: An Untrusted Bitcoin-Compatible Anonymous Payment Hub</u>

Mixcoin: Anonymity for Bitcoin with Accountable Mixes

Blindcoin: Blinded, Accountable Mixes for Bitcoin

Week 11

Anonymous (zero-knowledge) cryptocurrencies

research papers and readings

zk-SNARKs

Hawk: The Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts

Zerocoin: Anonymous Distributed E-Cash from Bitcoin

Zerocash: Decentralized Anonymous Payments from Bitcoin

<u>Zcash</u>

Cryptonote

Chapter 6 Bitcoin book

Week 12

Fair exchange on the blockchain

research papers and readings

Accountable Storage

Secure Multiparty Computation on Bitcoin

Fair and Robust Multi-Party Computation using a Global Transaction Ledger

How to use Bitcoin to Incentivize Correct Computation

How to use Bitcoin to Design Fair Protocols

Week 13

Measurements

research papers and readings

A Fistful of Bitcoins: Characterizing Payments Among Men with No Names
Coinscope: Discovering Bitcoin's Network Topology and Influential Nodes

<u>Visualizing Dynamic Bitcoin Transaction Patterns</u>

Weeks 14-15

Project presentations and final exam