ENEE 789M: Quantum technology

This class covers the physical principles behind emerging quantum technologies, from quantum-limited amplifiers to atomics clocks to quantum simulators. We will examine current and emerging platforms for quantum technologies, including neutral atom, ion trap, superconducting circuit, photonic, and spin-based approaches. Our focus will be on hurdles for implementing quantum devices for new applications, rather than exploration of the application space itself.

Prerequisite: A good grounding in electromagnetism and quantum mechanics should be considered a prerequisite for this course; familiarity with density matrices and master equations will be helpful.

Homework and exams

- Bi-weekly problem sets will be assigned on Wednesdays and due two weeks afterwards in class. They comprise 80% of your final grade. You are encouraged to work in groups of 3-4, though you must each turn in your own homework and list your group members' names.
- There will be a final paper in lieu of an exam. Topics will be chosen the first week in April, and the paper will be due in class on the final day.

Probable course structure

- Introduction to quantum bits
- Neutral atom qubits
- Superconductor-based qubits
- Cavity QED
- Hybrid quantum systems
- Quantum-limited sensors
- Quantum cryptography
- Quantum simulation

Supplementary texts

- Quantum Mechanics Messiah
- Lecture Notes on Quantum Information Preskill
- Quantum Optics Meystre
- Atom-Photon Interactions Cohen-Tannoudji, Dupont-Roc & Grynberg