Spring 2019 Written Qualifying Examination Basic Mathematics

1. (7 pts) The following questions are to be tackled without making use of properties of the exponential function. (You are allowed to use the Taylor-series definition of the exponential function, as well as those of the sin and cos function, if you need them.)
(a) (4 pts) Let k be an integer and $\varphi(k)$ be a function of k such that $\varphi(k) \rightarrow+\infty$ as $k \rightarrow+\infty$. Does the scalar sequence $\left\{x_{k}\right\}_{k=0}^{\infty}$, where

$$
x_{k}=\left(1+2 \varphi(k)+3(\varphi(k))^{2}+4(\varphi(k))^{3}+5(\varphi(k))^{4}\right) \mathrm{e}^{-\varphi(k)},
$$

necessarily converge (to a finite limit) as $k \rightarrow+\infty$, and if it does, what is the limit? Justify your steps.
(b) (3 pts) Prove the identity

$$
\mathrm{e}^{i \pi}+1=0
$$

where $i^{2}=-1$.
2. (6 pts)

Let M be an $m \times n$ real matrix such that, for all $x \in R^{n},\|M x\|=\|x\|$, where $\|\cdot\|$ denotes the Euclidean norm of its vector argument; e.g., $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots, x_{n}^{2}}$. The following proofs must be carried out using only the rules of vector and matrix multiplication. (If you wish to use other properties, you must first prove them.)
(a) (2 pts) Prove that M has full column rank (i.e., that its columns are linearly independent).
(b) (4 pts) Provide a detailed proof that $M^{T} M=I$.
3. (7 pts)
(a) (2 pts) Give four linearly independent solutions to the equation

$$
\frac{\mathrm{d}^{4} y(t)}{\mathrm{d} t^{4}}=y(t)
$$

(b) (5 pts) Consider the second-order differential equation

$$
\frac{\mathrm{d}^{2} y(t)}{\mathrm{d} t^{2}}=\frac{n}{t} \frac{\mathrm{~d} y(t)}{\mathrm{d} t}
$$

where n is a positive integer. (Clearly, constants (e.g., $y(t)=1 \forall t$) are solutions.) Find a non-constant solution. Justify your steps.

Solutions

1. (a)

$$
e^{t}>1+t+(1 / 2!) t^{2}+(1 / 3!) t^{3}+(1 / 4!) t^{4}+(1 / 5!) t^{5}>(1 / 5!) t^{5} \quad \forall t>0
$$

so that, (for k large enough that $\varphi(k)>0$),

$$
0<x_{k}<\left(1+2 \varphi(k)+3(\varphi(k))^{2}+4(\varphi(k))^{3}+5(\varphi(k))^{4}\right)\left(\alpha(\varphi(k))^{-5}\right)
$$

where $\alpha=5$!. Since $\varphi(k) \rightarrow \infty$ as $k \rightarrow \infty, x_{k}$ goes to zero as $k \rightarrow \infty$.
(b)

$$
e^{i}=1+i t-(1 / 2!) t^{2}-(1 / 3!) i t^{3}+(1 / 4!) t^{4}+\cdots=\cos (t)+i \sin (t)
$$

so that $e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1$.
2. (a) Suppose $x \neq 0$. Then $\|x\| \neq 0$ and, since $\|M x\|=\|x\|, M x \neq 0$ i.e., M has full column rank.
(b) $x^{\prime} M^{\prime} M x=\|M x\|^{2}=\|x\|^{2}=x^{\prime} x$ Hence, with $S=M^{\prime} M-I, x^{\prime} M^{\prime} M x-x^{\prime} x=x^{\prime} S x=$ 0 for all x. In particular, given a standard basis vector $e_{i} \in R^{n}, S_{i i}=e_{i}{ }^{\prime} S e_{i}=0$ for all i, and $S_{i j}+S_{j i}=S_{i i}+S_{j j}+S_{i j}+S_{j i}=\left(e_{i}+e_{j}\right)^{\prime} S\left(e_{i}+e_{j}\right)=e_{i}{ }^{\prime} S e_{j}+e_{j}{ }^{\prime} S e_{i}=0$ for all i, j. Since S is symmetric, we conclude that $S=0$, i.e., $M^{\prime} M=I$.
3. (a) $\sin (t), \cos (t), e^{t}$ and e^{-t}.
(b) Let $z=y^{\prime}$. Then

$$
z^{\prime}(t)=\frac{n}{t} z(t),
$$

i.e.,

$$
\frac{d z}{z}=n \frac{d t}{t},
$$

yielding (up to an additive constant)

$$
\log z(t)=n \log t
$$

i.e., $z(t)=t^{n}$. Hence $y(t)=\frac{t^{n+1}}{n+1}$ is a solution.

