ECE Written Qualifying Examination, Circuits Spring 2019

1. 7 points

The following circuit is assumed to have existed for all time. At $\mathrm{t}=0$ the switch S1 switches from node 3 to node 1 (connecting I to the RLC circuit) and S2 opens (switching from node 1 to node 4, thus disconnecting E). I and E are constant, DC, current and voltage, respectively; $\mathrm{R}, \mathrm{Ro}, \mathrm{L}$ and C are positive element values.
a) (3 points) Set up the (second order) differential equation for $v_{1}(t)$ for $t>0$ [where v_{1} is the capacitor node voltage measured with respect to ground].
b) (3 points) Find the following capacitor voltage and current values immediately before and after switching, $\mathrm{v}_{1}(0-), \mathrm{Cdv}_{1} / \mathrm{dt}(0-)$ and $\mathrm{v}_{1}(0+), \mathrm{Cdv}_{1} / \mathrm{dt}(0+)$.
c) (1 point) Give the final values $\mathrm{v}_{1}(\infty)$ and inductor current $\mathrm{i}_{\mathrm{L}}(\infty)$ [entering the dot].

2. 6 points

In the following bridge circuit the meter in the center is an amp-meter with input resistance of 0 Ohms . Vi is the voltage of the voltage source and the four branches are described by their admittances, $\mathrm{y}_{\mathrm{i}}, \mathrm{i}=1,2,3,4$. The current Im in the meter is known to be given by

$$
\operatorname{Im}=\left[\left(y_{2} \cdot y_{3}-y_{1} \cdot y_{4}\right) /\left(y_{1}+y_{2}+y_{3}+y_{4}\right)\right] \mathrm{Vi}
$$

a) (3 points) Find the relationship between the y_{i} such that the bridge is in balance, that is when $\operatorname{Im}=0$.
b) (3 points) If y_{1} at balance is perturbed to become $y_{5}=y_{1}+\Delta y_{1}$ [where y_{1} is as in a)] and y_{2} and y_{3} are unperturbed, find the perturbation Δy_{4} of y_{4} such that $y_{4}+\Delta y_{4}$ returns the bridge to balance.

3. 7 points

When the following NMOS transistor is in saturation (that is when $\mathrm{V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}$ th) its drain current is described by (k and the threshold voltage Vth are both positive)

$$
\mathrm{I}_{\mathrm{D}}=\mathrm{k}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{Vth}\right)^{2} \quad[\text { for NMOS }]
$$

Assume also that the PMOS is completely complementary, that is (with the same k and Vth) so that

$$
\mathrm{I}_{\mathrm{S}}=\mathrm{k}\left(\mathrm{~V}_{\mathrm{SG}^{-}}-\mathrm{Vth}\right)^{2} \quad[\text { for } \mathrm{PMOS}]
$$

(here the source current I_{S} and the drain current I_{D} are taken as positive when going into the source, S, and the drain, D, respectively)
The bias voltage Vdd is large enough to make the circuit operational [note the presence of the negative bias].

a) (3 points) When the input voltage is zero, $\mathrm{Vi}=0$, find the maximum resistance value, $\mathrm{Rn}=$ Rmax [in terms of k , Vth and Vdd], such that the NMOS transistor is in saturation.
b) (3 points) Again at $\mathrm{Vi}=0$ and when Rn and Rp are both smaller than Rmax, find the output difference voltage, Vdiff=Vn-Vp, (again in terms of k, Vth and Vdd)
[Vn and Vp are measured with respect to ground].
c) (1 point) Is it possible to design the circuit to obtain Vdiff $=0$ when $\mathrm{Vi}=0$?

Explain your answer.

Gatencer dolutions 519
H. The eiremit fortyo is
a) thener KCL: $\begin{aligned} I & =i_{C}+i_{2} \\ \Rightarrow i_{L} & =I-C d c_{4}\end{aligned}$

$$
\begin{aligned}
& \Rightarrow C \frac{d^{2} v_{1}}{d t^{2}}+R C \frac{d v_{i}}{d r}+\frac{1}{L} v_{T}=\frac{R I}{L}
\end{aligned}
$$

 $2-v_{1}\left(a_{1}\right)=v_{1}\left(a_{4}\right) ; i_{L}^{\prime}\left(0_{-}\right)=E / R=i_{L}\left(0_{+}\right) \Rightarrow \dot{c}_{e}^{\prime}\left(a_{+}\right)=I-L_{L}^{\prime}\left(a_{+}\right)$

$$
\therefore v_{1}\left(O_{+}\right)=E, C \frac{d v_{r}}{d r}\left(D_{+}\right)=I-E / R
$$

Hz. a) at salarue $i_{M}=0 \Rightarrow y_{2} y_{3}=y_{1} y_{4}$
b) Fonk the rewe trelamer $y_{3} y_{3}=\left(y_{1}+\Delta y_{1}\right)\left(y_{4}+\Delta y_{4}\right)=y_{1} y_{4}+\left[y_{4} \Delta y_{1}+y_{1} \Delta y_{4}+\Delta y_{1} \Delta y_{4}\right]$

$$
\Rightarrow[\cdot] \text { terom }=0 \Rightarrow 0=y_{4} \Delta y_{1}+\left(y_{1}+\Delta y_{1}\right) \cdot \Delta y_{4} \Rightarrow \Delta y_{4}=\frac{-\Delta y_{1}, y_{4}}{y_{1}+\Delta y_{1}}
$$

t3. a)

$$
\begin{aligned}
& V_{G S_{d}}=V_{d d}, V_{D S}=\lambda V_{d d}-R_{d m} \cdot R_{d}\left(V_{E S_{m}}-V_{G c}\right)^{2} \geqslant V_{G S_{m}}-V_{\partial m} \\
& \Rightarrow 2 v_{d d}-p_{d m e} \cdot k\left(v_{d d}-v_{d 6}\right)^{2}=r_{d d}-v_{d h}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \begin{array}{l}
V_{m}=V_{d d}-R_{m} k\left(V_{d d}-V_{d d}\right)^{2}, V_{p}=R_{p} \cdot k\left(V_{d d}-V_{d p}\right)^{2}+\left(-V_{d d}\right) \\
\Rightarrow V_{m}-V_{d}=V_{d d}-R_{m} \mu\left(V_{d d}-V_{d d}\right)^{2}-\left(-V_{d d}\right)-R_{p}+k\left(V_{d d}-V_{r t}\right)^{2}
\end{array} \\
& =2 V_{d d}-\left(R_{m}+R_{p}\right) k\left(V_{d d}-V_{M_{m}}\right)^{2}=V_{d e f f}
\end{aligned}
$$

c) He meed $V_{n t} \cdot V_{p}=0 \Rightarrow\left(V_{n}+R_{p}\right) \cdot \operatorname{Ge}\left(V_{d d}-V_{m}\right)^{2}=2 V_{d d}$ or $R_{n}+R_{p}=\frac{2 V_{d d}}{V_{2}\left(V_{d s}-V_{d s}\right)^{2}}$

The meximeun $\left[R_{n+}+R_{\text {r }}\right)$ ecori be
ar thei streede fy $\frac{2 V_{\text {th }}}{k\left(V_{L d}-V_{k}\right)^{2}}$ the amount meaded tofrex $V_{m}-V_{p}=0$

