1. (7 points) Let X and Y be random variables with joint pdf

$$
f_{X Y}=c x^{2} y, \quad 0 \leq x \leq y \leq 1
$$

(a) (1 point) Determine the constant c. Answer:

$$
1=\int_{0}^{1}\left[\int_{0}^{y} c x^{2} y d x\right] d y=c / 15
$$

So $c=15$.
(b) (1 point) Determine the marginal pdf of X. Answer:

$$
f_{X}(x)=\int_{x}^{1} 15 x^{2} y d y=(15 / 2) x^{2}\left(1-x^{2}\right), \quad 0 \leq x \leq 1
$$

(c) (1 point) Determine the marginal pdf of Y. Answer:

$$
f_{Y}(y)=\int_{0}^{y} 15 x^{2} y d x=5 y^{4}, \quad 0 \leq y \leq 1
$$

(d) (1 point) Are X and Y independent? Explain. Answer: They are not independent since $f_{X Y}(x, y) \neq f_{X}(x) f_{Y}(y)$.
(e) (1 point) Determine the conditional pdf of X given $Y=y$. Answer:

$$
f_{X \mid Y}(x \mid y)=\frac{15 x^{2} y}{5 y^{4}}=\frac{3 x^{2}}{y^{3}}, \quad 0 \leq x \leq y, 0 \leq y \leq 1
$$

(f) (1 point) Determine the conditional expectation of X given $Y=y$. Answer:

$$
E[X \mid Y=y]=\int_{0}^{y} x \frac{3 x^{2}}{y^{3}} d x=(3 / 4) y, \quad 0 \leq y \leq 1
$$

(g) (1 point) Let A be the event that $X Y \leq 1 / 2$. Determine $P(A)$. Answer:

$$
\begin{aligned}
P(A) & =\int_{0}^{1}\left[\int_{0}^{\min (y, 1 /(2 y))} 15 x^{2} y d x\right] d y \\
& =5 \int_{0}^{1} y\left[\min (y, 1 /(2 y)]^{3} d y\right. \\
& =5\left[\int_{0}^{1 / \sqrt{2}} y^{4} d y+\int_{1 / \sqrt{2}}^{1} \frac{1}{8 y^{2}} d y\right] \\
& =\frac{1}{8}(6 \sqrt{2}-5)
\end{aligned}
$$

2. (6 points) Let N denote the number of deer in a park. It is known that $N>25$. Ten of the deer were previously captured, tagged, and released. Suppose that later 20 deer are captured.
(a) (3 points) Find the probability that 5 of these are found to be tagged. Denote this probability by $p(N)$. Answer:

$$
p(N)=\frac{\binom{10}{5}\binom{N-10}{15}}{\binom{N}{20}}
$$

(b) (1 point) Determine the ratio $p(N) / p(N-1)$. Answer: Using the result in (a) to obtain $p(N)$ and $p(N-1)$, and simplifying, we obtain

$$
\begin{aligned}
\frac{p(N)}{p(N-1)} & =\frac{(N-10)!(N-1)!(N-26)!(N-20)!}{(N-11)!N!(N-25)!(N-21)!} \\
& =\frac{(N-10)(N-20)}{N(N-25)}
\end{aligned}
$$

(c) (2 points) Given the information that 5 were found to be tagged, a reasonable way to estimate N is to choose the value of N that maximizes the observation probability $p(N)$. Using your answer to (b), find this value of N. Answer: The ratio in (b) can be expressed as

$$
\frac{p(N)}{p(N-1)}=1+\frac{-5 N+200}{N^{2}-25 N}
$$

Since it is given that $N>25$, the denominator is always positive. The numerator is positive for $N<40$, negative for $N>40$, and 0 for $N=40$. It follows that $p(N)$ takes its maximum value at $N=39$ and $N=40$.
3. (7 points) The output Y of a binary communication system is a unit-variance Gaussian random variable with mean 0 when the input X is 0 , and mean 1 when the input is 1 . Assume that the input is 1 with probability p.
(a) (4 points) Find $P[X=1 \mid y<Y<y+h]$ and $P[X=0 \mid y<Y<y+h]$ under the assumption that h is infinitesimally small. Answer:

$$
\begin{aligned}
& P(y<Y<y+h \mid X=0)=\int_{y}^{y+h} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t \approx \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} h \\
& P(y<Y<y+h \mid X=1)=\int_{y}^{y+h} \frac{1}{\sqrt{2 \pi}} e^{-(t-1)^{2} / 2} d t \approx \frac{1}{\sqrt{2 \pi}} e^{-(y-1)^{2} / 2} h
\end{aligned}
$$

Applying Bayes Rule gives

$$
\begin{aligned}
P(X=0 \mid y<Y<y+h) & =\frac{\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} h(1-p)}{\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} h(1-p)+\frac{1}{\sqrt{2 \pi}} e^{-(y-1)^{2} / 2} h p} \\
& =\frac{1-p}{1-p+p e^{y-(1 / 2)}}
\end{aligned}
$$

$$
\begin{aligned}
P(X=1 \mid y<Y<y+h) & =\frac{\frac{1}{\sqrt{2 \pi}} e^{-(y-1)^{2} / 2} h p}{\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} h(1-p)+\frac{1}{\sqrt{2 \pi}} e^{-(y-1)^{2} / 2} h p} \\
& =\frac{p}{p+(1-p) e^{-y+(1 / 2)}}
\end{aligned}
$$

(b) (3 points) The receiver uses the following decision rule: If

$$
P[X=1 \mid y<Y<y+h]>P[X=0 \mid y<Y<y+h]
$$

decide that input was 1 ; otherwise, decide that input was 0 . Show that this decision rule leads to the following threshold rule: If $Y>T$, decide input was 1 ; otherwise, decide input was 0 . Express T as a function of p. If the inputs 0 and 1 are equally likely, what is the corresponding value of T ? Answer: Substituting the answers from (a) in the decision rule and simplifying, it follows that the decision will be 1 if

$$
e^{2 y-1}>\frac{(1-p)^{2}}{p^{2}}
$$

which implies that

$$
y>\frac{1}{2}+\log \frac{1-p}{p}
$$

So $T=\frac{1}{2}+\log \frac{1-p}{p}$. If the inputs are equally likely, $T=\frac{1}{2}$.

