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Plan

e Part | [Adversarial ML] ~25mins
e Different types of attacks
e Test-time attacks
e Defenses
e Theoretical explorations

e Part Il [Opportunities in FM] ~Rest of the talk
e Opportunities for FM researchers
e Focus on lot of work by Tommaso and Sanjit



Announcements/Caveats

* Please ask questions during the talk
e If we don’t finish, fine©®

e More slides than | can cover
Lot of skipping will be going on

* Fast moving area
e Apologies if | don’t mention your paper

e Legend Q
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Machine learning brings social disruption at scale
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ML reached “human-level performance” on
many |1D tasks circa 2013

...recognizing objects
and faces....

v

(Szegedy et al, 2014) (Taigmen et al, 2013)

...solving CAPTCHAS and

SN <
A ED :
M 0] reading addresses...

I | Privacy & Terms

(Goodfellow et al, 2013) (Goodfellow et al, 2013)



ML beating doctors©

* NOVEMBER 15, 2017

e Stanford algorithm can diagnose pneumonia better than radiologists

e April 14, 2017

e Self-taught artificial intelligence beats doctors at predicting heart attacks




Machine learning is deployed in adversarial
settings
;‘ — " m Mickey Mouse Baby Is in Trouble When Hiding In a...

@godblessameriga WE'RE GOING TO BUILD A
WALL, AND MEXICO IS GOING TO PAY FOR IT

Microsoft’s Tay chatbot

Training data poisoning

YouTube filtering

Content evades detection at inference



ML Iin CPS

Artificial Intelligence based systems for automotive
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Presenter
Presentation Notes
To calibrate: Number of vehicles sold in the US in 2016 was around 17 million, globally around 88 million.

“The attach rate of AI-based systems in new vehicles was 8 percent in 2015, and the vast majority were focused on speech recognition. However, that number is forecast to rise to 109 percent in 2025, as there will be multiple AI systems of various types installed in many cars.”

“AI-based systems in automotive applications are relatively rare, but they will grow to become standard in new vehicles over the next five years -- especially in the following two categories:
Infotainment human-machine interface, including speech recognition, gesture recognition (including hand-writing recognition), eye tracking and driver monitoring, virtual assistance and natural language interfaces.� 
ADAS and autonomous vehicles, including camera-based machine vision systems, radar-based detection units, driver condition evaluation, and sensor fusion engine control units (ECU).
“


.1.D. Machine Learning

Test I: Independent

I Identically
D: Distributed

All train and test examples
drawn independently from
same distribution




Security Requires Moving Beyond [.1.D.

- Not identical: attackers can use

unusual inputs

B i

i | ; ol [ANS NS
(Eykholtet al, CVPR 2017)

- Not independent: attacker can repeatedly send a single
mistake (“test set attack™)

10



Adversarial Learning is not new!!

* [owd: | spent the summer of 2004 at Microsoft Research working
with Chris Meek on the problem of spam.

* We looked at a common technique spammers use to defeat filters: adding
"good words" to their emails.

 We developed techniques for evaluating the robustness of spam filters, as
well as a theoretical framework for the general problem of learning to defeat
a classifier (Lowd and Meek, 2005)

e But...

 New resurgence in ML and hence new problems

e Lot of new theoretical techniques being developed
e High dimensional robust statistics, robust optimization, ...

11



Attacks on the machine learning pipeline

Parameter Tampering Attack

Training set

oisonin -
P 9 Adversarial Examples o1 thaft

12



ML (Basics)

e Supervised learning

e Entities
e (Sample Space) Z = X XY
* (data, label) (x,y)

e (Distribution over ) D
e (Hypothesis Space) H

* (loss function) l: (H X Z) > R



ML (Basics)

e Learner’s problem

e Find w € H that minimizes
° E{Z~D} l(W,Z) +AR(W)
o i Zm l(W) (xi)yi)) +AR(W)
m 2{i=1}

e Sample set S = {(x1, V1), ) oy, Vim ) }

e Stochastic Gradient Descent (SGD)
o (iteration) w(t + 1] = w(t] —nl"(w]|t], (X0 Vi)
e (learning rate) n;



ML (Basics)

e After Training
« F:X>Y

* Fy(x) = arg{ggg_s(Fw)(x)
* (softmax layer) s(F,,)

* Sometimes we will write F,, simply as F
e w will be implicit



Training Time Attack



Attacks on the machine learning pipeline

Parameter Tampering Attack

X —>\/\
P

Training set

oisonin -
P 9 Adversarial Examples o1 thaft
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Lake Mendota Ice Days
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Poisoning Attacks
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Formalization

» Alice picks a data set S of size m

» Alice gives the data set to Bob

e Bob picks
e ¢ m points SB
e Gives the data set S U SZ back to Alice
e Or could replace some pointsin S

e Goal of Bob

* Maximize the error for Alice

e Goal of Alice
e Get close to learning from clean data

Robust Statistics

Second Edition

Peter J. Huber
Elvezio M. Ronchetti

(3 WILEY




Representative Papers

e Being Robust (in High Dimensions) Can be Practical
|. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, A. Stewart
ICML 2017

 Certified Defenses for Data Poisoning Attacks. Jacob Steinhardt, Pang Wei
Koh, Percy Liang. NIPS 2017

e Scott Alfeld, Xiaojin Zhu, and Paul Barford. Explicit defense actions against
test-set attacks. AAAI 2017

e Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks,
NIPS 18



Model Extraction/Theft Attack



Attacks on the machine learning pipeline

Parameter Tampering Attack

Training set

oisonin -
P 9 Adversarial Examples o1 thaft



Model Theft

* Model theft: extract model parameters by queries
(intellectual property theft)
e Given a classifier F

 Query F on qq, ..., q,, and learn a classifier G
e F =G

* Goals: leverage active learning literature to
develop new attacks and preventive techniques

e Paper: Stealing Machine Learning Models using Prediction APIs,
Tramer et al., Usenix Security 2016



Fake-News Attacks




Fake News Attacks

Abusive use of machine learning:

Using GANSs to generate fake content (a.k.a deep
fakes)

Strong societal implications:

elections, automated trolling, court

evidence ... Generative media:

e Video of Obama saying things he
never said, ...

e Automated reviews, tweets,
comments, indistinguishable from
human-generated content 26



Presenter
Presentation Notes
Start with the box on right and move to the areas.


Test-time Attacks

27



Attacks on the machine learning pipeline

Parameter Tampering Attack

Training set
poisoning Adversarial Examples ;oo b

28



Definition

“Adversarial examples are inputs to
machine learning models that an attacker
has intentionally designed to cause the
model to make a mistake”

(Goodfellow et al 2017)




What if the adversary systematically found

these Inputs?

+.007 x

' T +
. sign(VJ (0, x,y)) esign(V,J (0, x,v))
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Good models make surprising
mistakes in non-lID setting

“Adversarial examples”

Schoolbus Perturbation

(rescaled for visualization)

(Szegedy et al, 2013)

Ostrich

31



Adversarial Examples

99% guacamole



Adversarial examples...

. beyond deep learning ... beyond computer vision
g AP G - R (\ Q @ P[X=Malware] =0.90
. /—' c‘”*«* %" P[X=Benign] = 0.10
R R " \ - . (\ Q ®___, P[X*=Malware] = 0.10
Logistic Regression S, {«’ P[X*=Benign] = 0.90

Positive
Output Class

Support Vector Machines Decision Trees

33


http://www.youtube.com/watch?v=4r_KCjKHV_M

Formal Definition (Local Robustness)

e let0 € X X X beabinary oracle
* O(x,x") =1 (examples x and x" “perceived” same)
e Otherwise 0 (Examples are “perceived” different)
* Targeted local robustness TRC (x, F, t)
e Vx': O(x,x')=>=a(F(x')=1t)
» Global targeted robustness predicate/metric GTR? (F, t)
e Vx : TRY (x,F,t)
* Eqxopy (TR® (x,F,t))
e Observation
» Targeted adversarial examples are counterexamples to GTRY (F, t)

34



Global Robustness

e Local robustness predicate R® (x, F)
e Vx': O(x,x')= (F(x) = F(x")
* Global robustness predicate/metric GR? (F)
e Vx R9(x, F)
* E(x-p) (R°(x, F))
e Observation
e adversarial examples are counterexamples to GR? (F)

35



Instantiating the Oracle

e [deal

e O(x,x") = 1iff a human perceives x and x'as same images
e Difficulty:
* We don’t completely how human perception works®
 What researchers actually use
e O(x,x") = 1iff x and x' are close under some norm



Threat Model

e White Box

e Complete access to the classifier F

* Black Box

e Oracle access to the classifier F
e for a data x receive F(x)

* Grey Box

e Black-Box + “some other information”
e Example: structure of the defense

37



FGSM (white box, misclassification)

e Take a step in the

e direction of the gradient of the loss function

e § = e sign(Ay L(w, x,F(x)))

e Essentially opposite of what SGD step is doing
* Paper

e Goodfellow, Shlens, Szegedy. Explaining and harnessing adversarial examples.
ICLR 2015



PGD (white box, misclassification)

° PI’O].{B(x,e)} (y)
* Project y to the ball B(x, €)

e [terate the following step
* X(k+1} = Projigxen (xx + € sign A, l(w, x,F(x)))

e |ntuition:
e Take a FGSM step, and
e Project it down to the ball



JSMA (white-box, targeted)

Neural Network
Architecture

Legitimate input
classified as “1”
by a DNN

()Ft
0if =52 e ) <0 or EJX#
OF ¢ ( OF ;(A)
(aX )|ZHH oX,

Direction i
Sensitivity — —>
Estimation

oF;(X)
oX,;

> ()

otherwise

Perturbation

Selection

F(X)=1 XeX+0X

X
Y

SXI Misclassification
Check for:
F(X +46X) =
no

‘"\‘. Neural Network

Architecture

X*=X+§

yes

Adversarial Sample
misclassified as “4”
by a DNN

F(X*) =4

[

The Limitations of Deep Learning in Adversarial Settings [IEEE EuroS&P 2016]

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami

|




Other Attacks (White-box, targeted)

o Carlini-Wagner (CW)

o Use optimization engines (i.e. Adam) in a black-box manner

o Athalye-Carlini-Wagner
o More on this later....

o Builds on CW



Attacking remotely hosted black-box models

Local
substitute

“no truck

sign” “STOP sign”

{

Practical Black-Box Attacks against Machine Learning [AsiaCCS 2017]
Nicolas Papernot, Patrick McDaniel, lan Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami




Abstract Algorithm

 Choose S (substitute network)
* Interact with the classifier I in a black-box manner

* Train the substitute network S

e Run white-box attack on S

43



FM Perspective

e Black-box Adversarial Attacks with Limited Queries and Information,

Andrew llyas, Logan Engstrom, Anish Athalye, and Jessy Lin, ICML
2018

* These are very powerful black-box learner
* Problem: Use these in verification

44


https://arxiv.org/abs/1804.08598

Defense

45



Robust Defense Has Proved Elusive

e Quote

* In a case study, examining noncertified white-box-secure defenses at ICLR
2018, we find obfuscated gradients are a common occurrence, with 7 of 8
defenses relying on obfuscated gradients. Our new attacks successfully
circumvent 6 completely and 1 partially.

* Paper

e Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses
to Adversarial Examples.

e Anish Athalye, Nicholas Carlini, and David Wagner, ICML 2018



Certified Defenses

* Robustness predicate Ro(x, F, €)
* Forallx’ € B(x,€) we have that F(x) = F(x")

* Robustness certificate RC(x,F,e) = Ro(x, F, €)

* We should be developing defenses with certified defenses

44



Recent paper

 Towards Fast Computation of Certified Robustness for ReLU
Networks

e Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane

Boning, Inderjit S. Dhillon, Luca Daniel, ICML 2018
e Activation function limited to: f(x) = x™ = max(0, x)

* Follow up of CAV 17 paper by Katz et al.
e Quote: “... our algorithms are more than 10,000 times faster”
e Based on spectral techniques

48


https://arxiv.org/search?searchtype=author&query=Weng,+T
https://arxiv.org/search?searchtype=author&query=Zhang,+H
https://arxiv.org/search?searchtype=author&query=Chen,+H
https://arxiv.org/search?searchtype=author&query=Song,+Z
https://arxiv.org/search?searchtype=author&query=Hsieh,+C
https://arxiv.org/search?searchtype=author&query=Boning,+D
https://arxiv.org/search?searchtype=author&query=Dhillon,+I+S
https://arxiv.org/search?searchtype=author&query=Daniel,+L

Robust Optimization

Robust Objectives

e Use the following objective

*min E [(w,Zz'
R s o I

e Quter minimization use SGD
* Inner maximization use PGD

* A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu. Towards Deep
Learning Models Resistant to Adversarial Attacks. ICLR 2018

e A. Sinha, H. Namkoong, and J. Duchi. Certifying Some Distributional
Robustness with Principled Adversarial Training. ICLR 2018

Aharon Ben-Tal
Laurent El Ghaoui
Arkadi Nemirovski

49



Adversarial Training

1. Train the model naturally (the procedure | described first)

2. Adversarial training for each element x;
1. Run PGD attack from x; and get z; (adversarial example)
2. Use natural training on z;

Note: Using attack technique to make the model more robust
Analogy: Counterexample guided re-training (refinement?)



Theoretical Explanations



Three Directions (Representative Papers)

* Lower Bounds
e A. Fawzi, H. Fawzi, and O. Fawzi. Adversarial Vulnerability for any Classifier.

 Sample Complexity

e Analyzing the Robustness of Nearest Neighbors to Adversarial Examples,
Yizhen Wang, Somesh Jha, Kamalika Chaudhuri, ICML 2018

e Adversarially Robust Generalization Requires More Data. Ludwig Schmidt,
Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Madry, ICLR 2018

e We show that already in a simple natural data model, the sample complexity of robust
learning can be significantly larger than that of "standard" learning.



Three Directions (Contd)

e Computational Complexity

e Adversarial examples from computational constraints. Sébastien Bubeck, Eric
Price, llya Razenshteyn

 More precisely we construct a binary classification task in high dimensional space which
is (i) information theoretically easy to learn robustly for large perturbations, (ii)
efficiently learnable (non-robustly) by a simple linear separator, (iii) yet is not efficiently
robustly learnable, even for small perturbations, by any algorithm in the statistical query
(SQ) model.

» This example gives an exponential separation between classical learning and robust
learning in the statistical query model. It suggests that adversarial examples may be an
unavoidable byproduct of computational limitations of learning algorithms.

e Jury is Still Out!!



Verification, Analysis, Testing



Formal Definition

e Let 0 € XXX be abinary oracle

* 0(x,x") =1 (examples x and x’ “perceived” same)
e Otherwise 0 (Examples are “perceived” different)

* Local robustness predicate R° (x, F)
e Vx': O(x,x")=> (F(x) =F(x")
* Global robustness predicate GRC (F)
e Vx GRC (F)
* Observation
* adversarial examples are counterexamples to GR? (F)

55



Decision Procedures

» Decision procedures for verifying local robustness at a point
e Safety Verification of DNNs, CAV 2017
e RelLUplex: An Efficient SMT Solver for Verifying DNNs, CAV 2017

e Great work, but
e Scalability (see earlier slide)
* Not coupled with some of the ML techniques being developed

* Problem
e Can these decision procedures help in adversarial training ?

56



Analysis/Testing
 DeepXplore, SOSP 17

* Formal Symbolic Analysis of Neural Networks using Symbolic
Intervals, Usenix Security 2018

e Al2: Abstract Interpretation of Neural Networks, Oakland 2018

* Problem
e Can these techniques help in adversarial training?

57



Glaring Omission from AML

e Specification of the system that is using ML
e Control loop for flying a drone

* Problem
e Can we do better if we are more “application aware”?

e Evidence
e http://unsupervised.cs.princeton.edu/deeplearningtut
e Tutorial at ICML 2018 by Sanjeev Arora

 Towards Verified Artificial Intelligence, Sanjit A. Seshia, Dorsa Sadigh, S.
Shankar Sastry

58


http://unsupervised.cs.princeton.edu/deeplearningtutorial.html
https://arxiv.org/search?searchtype=author&query=Seshia,+S+A
https://arxiv.org/search?searchtype=author&query=Sadigh,+D
https://arxiv.org/search?searchtype=author&query=Sastry,+S+S

Automatic Emergency Braking System

- Goal: Brake whenever an obstacle is detected

distance, velocity

ML perception

Dreossi, Donze, Seshia, “Compositional Falsification of Cyber-Physical Systems with Machine Learning Components’, NFM 2017.



Theme 1

* We allowed only one kind of transformation
e Add a vector 6

e Allow richer transformations
e Relevant to the application
e Translation, cloudy background, .....
* Paper
e A Rotation and Translation Suffice: Fooling CNNs with Simple Transformations
* Problem:
e Construct adversarial examples given a specification of transformations?




Semantic Adversarial Analysis and Training

DNN analysis must be more semantic

Semantic modification
+.007 x

“panda” “nematode” _ “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Non-semantic perturbation (i.e., noise)

Semantic perturbation (i.e., translation) ¢



Theme 2

* Problem:
e Construct adversarial examples that actually lead to system-level failures?

* We can then use these examples for adversarial training
 More on this later...

62



Semantic Adversarial Analysis and Training

DNN analysis must be more semantic Example: AEBS
Counterexamples?

Semantic modification
System-level specification

Perception-level spec:
“detect cars”

System-level spec:
“do not crash”

Does not affect the system



Semantic Adversarial Analysis and Training

DNN analysis must be more semantic Example: AEBS
Spec: “do not crash”

e Semantic modification Semantic augmentation
o System-level specification | |

e Semantic (re-)training | |

Original Original
Training set | - Training set | -

Dreossi, Ghosh, Yue, Keutzer, Sangiovanni-
Vincentelli, Seshia, “Counterexample-
Guided Data Augmentation”, [JCAI 2018.




Experimental Results Counterexamples

« Augmentation methods comparison

!

Original

Standard
: 0.69

augmentation

Random 0.76
Counterexample-guided | Halton 0.79

augmentation Ve raE
. 0.75

constraint

“Counterexample-Guided Data Augmentation”, T. Dreossi, S. Ghosh, X. Yue, K. Keutzer,

A. Sangiovanni-Vincentelli, S. A. Seshia, s JCA2018.

0.80

0.87
0.87

0.86
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Presentation Notes
Precision = fraction of returned positive labels (cars) that are really positive (cars); Recall = fraction of true positive labels (cars) that were identified 


Theme 3

-

* Problem:
e Can we use ML in a white-box manner to synthesize more resilient controllers?

* Some evidence that using confidence measure (i.e. output of softmax
layer) can help

e Reinforcing Adversarial Robustness using Model Confidence Induced by
Adversarial Training, Xi Wu, Uyeong Jang, Jiefeng Chen, Lingjiao Chen,
Somesh Jha, ICML 2018

66


http://andrewxiwu.github.io/public/papers/2018/WUCCJ18-confidence.pdf

Semantic Adversarial Analysis and Training

DNN analysis must be more semantic

Semantic modification
System-level specification
Semantic (re-)training
Confidence-based analysis

Prediction: car 49 %

Example: AEBS
Spec: “do not crash”

-

.

AEBS
(threshold 50%)

\

)

.

AEBS
(confidence
analysis)

)

No car
Keep going

VS

Maybe car...
Better slow down
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Theme 3

* Problem:

e Can we generate adversarial examples that matter (i.e. cause system-level
failure)?

T. Dreossi, A. Donze, and S. A. Seshia. Compositional
Falsification of Cyber-Physical Systems with Machine

Learning Components, In NASA Formal Methods
Symposium, May 2017.
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Compositional Falsification

Statement

given a formal specification ¢ (say in a formalism such as signal
temporal logic) and a CPS+ML model M,

find an input for which M does not satisfy .

Problem:
How do handle the ML component?

69



Obvious Strategies

* Treat ML component as any other component and

e Let “abstraction refinement” handle it

e Will it work?
 DNN models are constantly getting bigger (>= 20 million parameters)
 Some folks are talking about a billion parameters

e Use adversarial example generator as a “black box”

e Will it work?
e Will generate lot of examples that won’t falsify the system

e Density of “spurious” adversarial examples is too large
e This is a conjecture!!!

70



Our Approach: Use a System-Level
Specification
x “Verify the Deep Neural Network Object Detector”

J “Verify the System containing the Deep Neural Network”

Formally Specify the End-to-End Behavior of the System

Temporal Logic: G (dist(ego vehicle, env object) > A)

Environment

——  Controller >

Plant

Learning-Bas;éd Perception

71



Compositional Falsification

e Challenge: Very High Dimensionality of Input Space!

e Standard solution: Use Compositional (Modular)
Verification

“ Environment

Controller

Learnlky Base rception
e However: no formal spec. for neural network
component!
e Compositional Verification without Compositional
Specification?!!

72



Compositional Approach: Combine
Temporal Logic CPS Falsifier with ML

Analyzer
System S >
Env. E >
Property @ >

r

\

System-Level
Analysis
(CPS Falsifier)

~

Region of Uncertainty

(projected) Ugo,©

r

<€

J

l

Component-level errors

(misclassifications)

Correct / Incorrect (+ counterexamples)

e CPS Falsifier uses abstraction of ML component
e Optimistic analysis: assume ML classifier is always correct
e Pessimistic analysis: assume classifier is always wrong

\

Component
(ML) Analysis

~

J

e Difference is the region of uncertainty where output of the ML
component “matters”



|dentifying Region of Uncertainty (ROU)
for Automatic Emergency Braking System

Green =2 environments where the property is satisfied

alw (not (has_collided)) alw (not (has_collided)) alw (not (has_collided))

&0

60 60

50 50

40 40
-100

o

=)

20 20

10

1]

0 5 10 15 U_zs{(]ﬂ] 25 20 35 40 15 v_zs?O} 25 30 35 40

Potentially unsafe region
depending on ML component
(vellow)

ML always correct ML always wrong
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Sample Result
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Theme 4 (*)

* Problem:
e Can we use the specification to modify the loss function?

e [ntuition

e Steer the ML model towards correcting mis-classifications that cause system-
level failure?

e |nitial results, but inconclusive!
e Trained with hinge loss
e Does reduce the impact of the collision
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Future
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Exciting Area

e Several problems mentioned during the talk

e Get involved
e Several workshops coming up
e Don’t ignore the email invitations ©

 Release benchmarks!
e https://www.robust-ml.org/
 https://github.com/tensorflow/cleverhans



https://www.robust-ml.org/

Get involved!

https://github.com/tensorflow/cleverhans
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