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Goal: Construct a list decoding algorithm of RS Codes with therecmrection radiug- greater than for
the Sudan algorithm. We will think of Sudan’s algorithm agpofynomial interpolation, i.e., constructing
a polynomial Q(z, y) such that it “passes” through thepoints (z;,7;),i = 1,2,...,n. This gave us
independent linear conditions. The error correcting radéurestricted by the degree condition and the
solvability condition (Conditions 1 and 2 in the previoustlge). It is possible to increaseif we can have
more thamn independent linear conditions. The idea that we will pulisuthis lecture is to interpolate the
polynomial through the given points so that at each of them it has a root of multiplicity 1.

Guruswami-Sudan Decoding
Let Q(z,y) =37, ; Qijz'y’ € Fylz,y).

Let us make ourselves comfortable with the ide@dfiaving a root of multiplicitys at (a, ), a,b € F,,.

Begin with an example: The polynomiglx) = 2% — 4z + 3 € R[z] has a root at 1. Expanding it
into a “series” in the neighborhood af = 1, we obtainf(z) = fo + fi(z — 1) + fao(z — 1)2, where
fo=0,fi = =2, fo = 1. Sincef(1) = 0, we got fy = 0. Taking f(z) = 223 — 922 + 12z — 5 and
expanding it in the neighborhood of= 1, we obtainf(z) = —3(z — 1)? + 2(z — 1)3. Thus,z = lis a
zero of f of multiplicity s = 2. Not only the termf, = 0, but alsof; = 0, i.e., f’(1) = 0.

Let @(l’, y) = Q(l' +a,y+ b) = zi,j @Z’jl’iyj. Then
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(We relied upor(z + a)’ = (a +2)' = >, (})a'*2®)
Definition: The point(a, b) is called a zero 0®(z, y) of multiplicity s if the coefficients of the power series
@1320f0r0§1+j<3 o

(The expressio®,(z,y) = >.;; Qij () (5)=' ¢~ is called aHasse derivative of Q(z,y) )

Example: Let Q € Fy[x, 3] have the formQ(z, y) = 2%y + 22 + y + 1. ThenQ a zero of multiplicity 2 at
(1,1), sinceQ(x + 1,y + 1) = 22y.

Idea: Fit Q(x,y) through the point§(z;,7;),7 = 1,2,--- ,n } so that at each poirtz;, r;), Q(x,y) has a
zero of multiplicity s for somes > 1.

Let Q(z,y) = 35, Q;(x)y’ be a polynomial such that
1. (x;,1;) is a zero of multiplicitys,i = 1,2,--- ,n

2.degQj(z) <s(n—71)—1—-j(k—-1),7=0,1,---,1
Definition: The weighted degree is defined as g@glxgyh =g+ (k—1)h
Thendeg;_19;(x)y’ <s(n—7)—1,7=0,1,...,1L

Lemma: Let c = eval(f), degf < k — 1. Let Q be chosen to satisfy Conditions 1-2. Thén—
f@)lQ(x,y).



Proof: (&) First we will show that ifi is such thatf(z;) = r; then (z — z;)* | Q(z, f(x)). Let
p(z) = f(z + x;) — i, thenp(0) = 0 or z | p(x). Consider the polynomiaP(z) = Q(x + x;, p(z) + 74).
By definition of Q, 0 is its zero of multiplicitys, or z° | P(x), therefore(x — z;)° | P(xz — z;). Finally,
P(z — ;) = Q(z, f(x)), therefore(x — z;)|Q(z, f(x)).

(b) Compute the degregeg(Q(z, f(x)) < s(n — 7) — 1. On the other handx — x;)® | Q(z, f(z)) for
> n — 7 values ofi. The number of zeros (counted with multiplicities) is gezdhan the degree, therefore,
Qa, f(x)) =0 I
We again have 2 conditions on the parameters:
Condition 1: The degree of); is positive, i.e.s(n — 7) — I(k — 1) > 0. We will assume that

s(n—71)=1lk—-1)+1 (%)

Condition 2: The systenQ(z;,r;) = 0,7 = 1,2,...,n has a nonzero solution for the coefficientstf
which means that the number of unknowns should be greatetthieanumber of coefficients.

For a given pointr; the polynomialQ has a zero of multiplicitys at the point(x;, ;). This means that
in the expressio®(z,y) = Q(x + z;,y + r;) the coefficientsd,, 5 with 0 < a + 3 < s are zero. Their
number is(*}'). Therefore, the system hag*}") equations.

On the other hand, the polynomial hdst+ 1)s(n — 7) — (k — 1)@ coefficients. So the condition is

(l+1)s(n—7')—(l<:—1)l(l+1) >n<s+1> (x%).
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Solving forr, we obtain
Tkl 2-s+l 1
n n2s  2(l+1)  2sn’

. n—k+1 ¢ k S
Lemma: Ifs<lthenT>T,|fﬁ </t

Proof: Exercise.

Before formulating the algorithm, let us examine a few exsphat detail the error correction radius
7 of the algorithm as a function of the list sizand the multiplicitys.
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These functions are shown in the figure. Notice that for argivee have freedom in choosing< |.
The whole spectrum of choices= 0, 1,...,l — 1 provides an increase of the decoding radius over the list
sizel — 1 for almost all values of the rate/n (except for a finite number of its values).
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Figure 1: The behavior of the relative error correction wadi/n as a function of the code rate/n for
1=1,2,3,4,andl, s — oo.

The Guruswami-Sudan decoding algorithm

Let C be an[n, k] RS code ovelff,. Letc = eval(f) be the transmitted codeword,be the received
codeword. Chooskand find the maximum andr that satisfy the conditions

s(n—71)=Ilk—-1)+1

n(k—1) 4+ /n?2(k —1)2+4((n —7)2 —n(k — 1))
2(n—7)2—n(k—1)

S >

1. Solve the following system fa@,, ,

{ Uy
22 (D)) an =0

foralla+ 38 <s,i=1,2,...,n.

2. Form the polynomial:
lj

Qz,y) = Z (Z Qmwi)yj

!
j=0 =0
3. Find ally-roots of Q, that is, find allf (x) where(y — f(x))|Q(z,y)

4. Output the codewords= eval(f) such thati(c,r) < 7.
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The implementation complexity of the most efficient versidithe GS algorithm i) (n?m?).

Let us justify the choice of.
Lemma: If (n—7)2 > n(k—1), sis chosen as described above argchosen froms(n—7) = I[(k—1)+1

l(l+1)>n<s+1>.

then
(l+Ds(n—71)—(k—1) 5 5

Proof: Let us transform the inequality in question to a more coremtiorm.

@+ 0=+ 1) - =) = @i - -1 - Y]
:“+”“%_”+Q)>éwk—n+2)
Thus if ! (s+1)
5(l(l{,’—l)—|—2)>n 5 (% % %)

then we will have proved the lemma. We have chosen

=ms =l k) 42— s—1) 4 1.

I=—%—1

Thus, by(x * %) we need to check the inequality

(n—7)s—1
P (s(n—7)+1)>n 5
Solving this fors, we obtain the inequality

. n(k—1)+ /n2(k —1)2 +4((n — 7)2 —n(k — 1))
2((n—7)2 —n(k—1)) '

The inequality(n — 7)2 > n(k — 1) implies for largen
T<1-VER
n

This is the asymptotic (relativarror correcting radius of the GS algorithm. Observe that this is always
better than'n — k)/(2n) (the list-of-one error correction radius) because

1— 1
e vE=vE- T <

the last step by the arithmetic mean-geometric mean inggual



Soft-decision decoding
Suppose that instead of € F, we receive a signal; and can find?(a|r;) for all a € F,.

What we see is a matrix:

1 2 b n

0 [ PO PO[) P01, P{0]r)
1 P(1|rq) P(1|rq) (1|ry) P(1|ry)
o | Plarn)  Plalr) P(alr;) P(alry)
¢—1| Plg—1r) Plg—1Jra) P(q - 1Jry) Pg—1|ry)

Suppose that this matrix is transformed tpan matrix W with nonnegative integer entries, for instance,
by multiplying its entries by the largest denominator (unithe assumption that the probabilities above are
rational numbers). We would like to decode to a codewoted (¢, . .., ¢,) that maximizes the quantity

n
E We, i
i=1

It is possible to modify the GS algorithm so that it outputspolynomial time (as a functionandn), a list
of codewords of the RS codg[n, k, d], such that these codewore;, c, ..., c; } satisfy

n n q—1
Z WZ}C]'J > \J (n - d) Z Z Wiz,a

i=1 i=1 a=0

for j = 1,2,...,1. This condition guarantees that the system of equationthéocoefficients of the interpo-
lation polynomial has a honzero solution.

Moreover, the matri¥? does not have to be associated with transmission. For mestayivenn subsets
Si,...,S, C Fy, the GS algorithm can be employed to solve the problem ofrftnthe codewords € C
such that; € S;.



