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Instructor: Alexander Barg Notes by: Sung Hyun Chun,Randolph Baden

Lectures 20-21(11/15, 11/19/05). RS Decoding
The Guruswami-Sudan algorithm http://www.ece.umd.edu/ãbarg/626

Goal: Construct a list decoding algorithm of RS Codes with the error correction radiusτ greater than for
the Sudan algorithm. We will think of Sudan’s algorithm as ofpolynomial interpolation, i.e., constructing
a polynomialQ(x, y) such that it “passes” through then points (xi, ri), i = 1, 2, . . . , n. This gave usn
independent linear conditions. The error correcting radius is restricted by the degree condition and the
solvability condition (Conditions 1 and 2 in the previous lecture). It is possible to increaseτ if we can have
more thann independent linear conditions. The idea that we will pursuein this lecture is to interpolate the
polynomial through the givenn points so that at each of them it has a root of multiplicitys > 1.

Guruswami-Sudan Decoding
LetQ(x, y) =

∑
i,j Qijx

iyj ∈ Fq[x, y].

Let us make ourselves comfortable with the idea ofQ having a root of multiplicitys at (a, b), a, b ∈ Fq.
Begin with an example: The polynomialf(x) = x2 − 4x + 3 ∈ R[x] has a root at 1. Expanding it

into a “series” in the neighborhood ofx = 1, we obtainf(x) = f0 + f1(x − 1) + f2(x − 1)2, where
f0 = 0, f1 = −2, f2 = 1. Sincef(1) = 0, we gotf0 = 0. Taking f(x) = 2x3 − 9x2 + 12x − 5 and
expanding it in the neighborhood ofx = 1, we obtainf(x) = −3(x − 1)2 + 2(x − 1)3. Thus,x = 1 is a
zero off of multiplicity s = 2. Not only the termf0 = 0, but alsof1 = 0, i.e.,f ′(1) = 0.

LetQ(x, y) = Q(x + a, y + b) =
∑

i,j Qijx
iyj. Then

Q(x, y) =
∑

i,j Qij

∑
α

(
i
a

)
xαai−α

∑
β

(
j
β

)
yβbj−β

=
∑

α,β xαyβ
∑

i,j Qij

(
i
α

)(
j
β

)
ai−αbj−β

=
∑

α,β Qαβxαyβ

(We relied upon(x + a)i = (a + x)i =
∑

α

(
i
α

)
ai−αxα )

Definition: The point(a, b) is called a zero ofQ(x, y) of multiplicity s if the coefficients of the power series
Qij = 0 for 0 ≤ i + j < s

(The expressionQαβ(x, y) =
∑

ij Qij

(
i
α

)(
j
β

)
xi−αyj−β is called aHasse derivative of Q(x, y) )

Example : LetQ ∈ F2[x, y] have the formQ(x, y) = x2y + x2 + y + 1. ThenQ a zero of multiplicity 2 at
(1,1), sinceQ(x + 1, y + 1) = x2y.

Idea: Fit Q(x, y) through the points{(xi, ri), i = 1, 2, · · · , n } so that at each point(xi, ri), Q(x, y) has a
zero of multiplicitys for somes ≥ 1.

LetQ(x, y) =
∑l

j=0 Qj(x)yj be a polynomial such that
1. (xi, ri) is a zero of multiplicitys, i = 1, 2, · · · , n

2. degQj(x) ≤ s(n − τ) − 1 − j(k − 1), j = 0, 1, · · · , l

Definition: The weighted degree is defined as deg1,k−1x
gyh = g + (k − 1)h

Then deg1,k−1Qj(x)yj ≤ s(n − τ) − 1, j = 0, 1, . . . , l.

Lemma: Let c = eval(f), degf ≤ k − 1. Let Q be chosen to satisfy Conditions 1-2. Then(y −
f(x))|Q(x, y).
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Proof: (a) First we will show that ifi is such thatf(xi) = ri then (x − xi)
s | Q(x, f(x)). Let

p(x) = f(x + xi) − ri, thenp(0) = 0 or x | p(x). Consider the polynomialP (x) = Q(x + xi, p(x) + ri).
By definition ofQ, 0 is its zero of multiplicitys, or xs | P (x), therefore(x − xi)

s | P (x − xi). Finally,
P (x − xi) = Q(x, f(x)), therefore(x − xi)|Q(x, f(x)).
(b) Compute the degreedeg(Q(x, f(x)) ≤ s(n − τ) − 1. On the other hand,(x − xi)

s | Q(x, f(x)) for
≥ n− τ values ofi. The number of zeros (counted with multiplicities) is greater than the degree, therefore,
Q(x, f(x)) ≡ 0

We again have 2 conditions on the parameters:
Condition 1: The degree ofQj is positive, i.e.,s(n − τ) − l(k − 1) > 0. We will assume that

s(n − τ) = l(k − 1) + 1 (∗)

Condition 2: The systemQ(xi, ri) = 0, i = 1, 2, . . . , n has a nonzero solution for the coefficients ofQ,
which means that the number of unknowns should be greater than the number of coefficients.

For a given pointxi the polynomialQ has a zero of multiplicitys at the point(xi, ri). This means that
in the expression̄Q(x, y) = Q(x + xi, y + ri) the coefficientsQ̄α,β with 0 ≤ α + β < s are zero. Their
number is

(
s+1
2

)
. Therefore, the system hasn

(
s+1
2

)
equations.

On the other hand, the polynomial has(l + 1)s(n − τ) − (k − 1) l(l+1)
2 coefficients. So the condition is

(l + 1)s(n − τ) − (k − 1)
l(l + 1)

2
> n

(
s + 1

2

)
(∗∗).

Solving forτ , we obtain
τ

n
< −k

n

l

2s
+

2l − s + 1

2(l + 1)
+

l

2sn
.

Lemma: If s < l thenτ > n−k+1
2 , if k

n
< s

l+1 + 1
n

Proof: Exercise.
Before formulating the algorithm, let us examine a few examples that detail the error correction radius

τ of the algorithm as a function of the list sizel and the multiplicitys.
1. l = 2, s = 1, k

n
< 1

3 + 1
n
, τ

n
< − k

n
+ 2

3

2. l = 3, s = 1, k
n

< 1
4 , τ

n
< −3

2
k
n

+ 3
4

l = 3, s = 2, k
n

< 1
2 , τ

n
< −3

4
k
n

+ 5
8

3. l = 4, s = 1, k
n

< 1
5 , τ

n
< −2 k

n
+ 8

10

l = 4, s = 2, k
n

< 2
5 , τ

n
< − k

n
+ 7

10

l = 4, s = 3, k
n

< 3
5 , τ

n
< −2

3
k
n

+ 6
10

These functions are shown in the figure. Notice that for a given l we have freedom in choosings < l.
The whole spectrum of choicess = 0, 1, . . . , l − 1 provides an increase of the decoding radius over the list
sizel − 1 for almost all values of the ratek/n (except for a finite number of its values).
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Figure 1: The behavior of the relative error correction radius τ/n as a function of the code ratek/n for
l = 1, 2, 3, 4, andl, s → ∞.

The Guruswami-Sudan decoding algorithm

Let C be an[n, k] RS code overFq. Let c = eval(f) be the transmitted codeword,r be the received
codeword. Choosel and find the maximums andτ that satisfy the conditions

s(n − τ) = l(k − 1) + 1

s >
n(k − 1) +

√
n2(k − 1)2 + 4((n − τ)2 − n(k − 1))

2(n − τ)2 − n(k − 1)

1. Solve the following system forQρ,σ

ℓ∑

σ=0

ℓσ∑

ρ=α

(
ρ

α

)(
σ

β

)
xρ−α

i rσ−β
i Qσ,ρ = 0

for all α + β < s, i = 1, 2, ..., n.

2. Form the polynomial:

Q(x, y) =
l∑

j=0

( lj∑

i=0

Qj,ix
i
)
yj

3. Find ally-roots ofQ, that is, find allf(x) where(y − f(x))|Q(x, y)

4. Output the codewordsc = eval(f) such thatd(c, r) ≤ τ.
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The implementation complexity of the most efficient versionof the GS algorithm isO(n2m4).
Let us justify the choice ofs.

Lemma: If (n−τ)2 > n(k−1), s is chosen as described above andl is chosen froms(n−τ) = l(k−1)+1
then

(l + 1)s(n − τ) − (k − 1)
l(l + 1)

2
> n

(
s + 1

2

)
.

Proof: Let us transform the inequality in question to a more convenient form.

(l + 1)(l(k − 1) + 1) − (k − 1)
l(l + 1)

2
= (l + 1)

[
l(k − 1) + 1 − l(k − 1)

2

]

=
(l + 1)(l(k − 1) + 2)

2
>

l

2
(l(k − 1) + 2).

Thus if
l

2
(l(k − 1) + 2) > n

s(s + 1)

2
(∗ ∗ ∗)

then we will have proved the lemma. We have chosen

l =
(n − τ)s − 1

k − 1
, l(k − 1) + 2 = s(n − τ) + 1.

Thus, by(∗ ∗ ∗) we need to check the inequality

(n − τ)s − 1

k − 1
(s(n − τ) + 1) > n

s(s + 1)

2
.

Solving this fors, we obtain the inequality

s >
n(k − 1) +

√
n2(k − 1)2 + 4((n − τ)2 − n(k − 1))

2((n − τ)2 − n(k − 1))
.

The inequality(n − τ)2 > n(k − 1) implies for largen

τ

n
≤ 1 −

√
R.

This is the asymptotic (relative)error correcting radius of the GS algorithm. Observe that this is always
better than(n − k)/(2n) (the list-of-one error correction radius) because

1 − R

2
− 1 +

√
R =

√
R − 1 + R

2
< 0

the last step by the arithmetic mean-geometric mean inequality.
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Soft-decision decoding
Suppose that instead ofri ∈ Fq we receive a signalri and can findP (a|ri) for all a ∈ Fq.

What we see is a matrix:

1 2 ... j ... n
0 P (0|r1) P (0|r2) P (0|rj) P (0|rn)
1 P (1|r1) P (1|r2) P (1|rj) P (1|rn)
.
.
.
a P (a|r1) P (a|r2) P (a|rj) P (a|rn)
.
.
.

q − 1 P (q − 1|r1) P (q − 1|r2) P (q − 1|rj) P (q − 1|rn)

Suppose that this matrix is transformed to aq×n matrixW with nonnegative integer entries, for instance,
by multiplying its entries by the largest denominator (under the assumption that the probabilities above are
rational numbers). We would like to decode to a codewordc = (c1, . . . , cn) that maximizes the quantity

n∑

i=1

Wci,i

It is possible to modify the GS algorithm so that it outputs, in polynomial time (as a functions andn), a list
of codewords of the RS codeC[n, k, d], such that these codewords{c1, c2, ..., cl} satisfy

n∑

i=1

Wi,cj,i
≥

√√√√(n − d)
n∑

i=1

q−1∑

a=0

W 2
i,a

for j = 1, 2, ..., l. This condition guarantees that the system of equations forthe coefficients of the interpo-
lation polynomial has a nonzero solution.

Moreover, the matrixW does not have to be associated with transmission. For instance, givenn subsets
S1, . . . , Sn ⊂ Fq, the GS algorithm can be employed to solve the problem of finding the codewordsc ∈ C
such thatci ∈ Si.
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