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Abstract 

Some dynamical systems possess invariant submanifolds such that the dynamics restricted to the invariant submanifold is 
chaotic. This situation arises in systems with a spatial symmetry or in the synchronization of chaotic oscillators. The invariant 
submanifold could become unstable to perturbations in the transverse directions when a parameter of the system is changed 
through a critical blow-out value. This could result in an extreme form of temporally intermittent bursting called on-off 
intermittency. 

We propose a model that incorporates the universal features of systems that display on-offintermittency. We study this model 
both with and without additive noise and we derive scaling results for the power spectral density of the on--off intermittent 
process and for the box counting dimension for the set of time intervals when the process takes on values above a given 
threshold. We then present numerical simulations realizing these results. 
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1. Introduction 

A recent paper [1], studied the consequences for a dynamical  system of  having an invariant manifold 3 on 

which the dynamics is chaotic, embedded in a phase space of  larger dimensionality. This situation is illustrated 

schematically in Fig. 1. 

It was further supposed that the invariant manifold has the property that on changing a parameter p of  the system 

through a critical value Pc, the invariant manifold goes from being stable for p < Pc (attracting on average for a 

set of  initial conditions close to it) to being unstable for p > Pc (repelling on average for a set of  initial conditions 

close to it). This transformation has been called a blow-out bifurcation [1]. 

* Corresponding author. 
1 Also at Department of Electrical Engineering. 
2 Also at Institute for Systems Research. 
3 A manifold is invariant if for every initial condition in the manifold, the subsequent orbit remains in the manifold. 

0167-2789/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved 
PII S0167-2789(96)00014-0 



S.C. Venkataramani et al./Physica D 96 (1996) 66-99 

Y 

67 

( lnv~ant Manifold 

, 

Fig. 1. A schematic of an invariant manifold with an embedded attractor. For initial conditions in the plane, the subsequent orbit remains 
in the plane. 

The authors of Ref. [ 1 ] showed that, depending on the global dynamics in the phase space, there are two possibilities 

of  particular interest: 

(1) For p values near Pc with p < Pc, there is an attractor in the phase space that is not in the invariant manifold 

and the basin of  the attractor in the invariant manifold is riddled by pieces of  the basin of  the attractor off the 

invariant manifold [ 1 ]. The basin of  the attractor in the manifold is riddled in the sense that every point in it has 

points of  the basin of  the other attractor arbitrarily close to it. 

(2) For p < Pc, the basin of  the attractor in the invariant manifold is not riddled. 4 For p values near Pc with p > pc, 

the system spends long periods of  time in the vicinity of  the invariant manifold. These intervals are interspersed 

with short bursts where the system moves away from the invariant manifold. This behavior is characteristic of  

an extreme form of temporally intermittent bursting called on-off intermittency [ 1,2]. 

Which of  the two situations applies depends on the dynamics off the invariant manifold. This paper is restricted 

to a discussion of  the second of  the above possibilities. In particular, we study the dynamics of  systems displaying 

on-off  intermittency and look at possible signatures of this kind of  behavior. 

This paper is organized as follows. In Section 2, we discuss some physical situations that could display on-off  

intermittency. In Section 3, we summarize our results and compare our results with those reported in the literature 

[2-19]. We also present numerical evidence that supports our results. In Section 4 we propose a continuous-time 

model that displays on-of f  intermittency and incorporates the effects of  additive noise. In Section 5, we study this 

model in the limit of no noise. In Section 6, we look at the effect of additive noise on the continuous-time model. 

In Section 7 we introduce a discrete-time version of  the model in Section 4. We show that the discrete-time model 

is equivalent to sampling the continuous-time model and we then numerically verify our results by simulations of 

this model. 

2. Systems with invariant manifolds 

Systems with chaotic dynamics on an invariant manifold of  smaller dimension than that of the entire phase space 

occur in many contexts. One class of  situations where invariant manifolds arise naturally is in the synchronization 

4 Note that this does not imply that there are no other attractors in the phase space. 
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Fig. 2. Schematic illustration of a Rayleigh-Bernard cell with two symmetric rolls. 

of identical chaotic oscillators [3]. For the case of two oscillators, the synchronized state is an invariant manifold 
of dimension equal to half that of the phase space. Another class of examples is physical systems with a spatial 
symmetry. An example is a Rayleigh-Bernard cell that is symmetric about its mid-plane. In such a cell, it is possible 
to setup a flow with two rolls symmetric about the mid-plane as in Fig. 2. Assume that the conditions (e.g. parameter 
values) are such that the time-dependence of these rolls is chaotic, while the velocity of the fluid is symmetric 
about the mid-plane for each instant of time. This symmetric motion represents motion in an invariant plane in 
the entire phase space. For example, the phase space can be represented by the set of coefficients in a Fourier 
expansion of the velocity field. Then, the invariant plane is specified by setting all the coefficients of the modes that 
represent asymmetric motion to zero. This situation could undergo a blow-out bifurcation to on--off intermittency 
if we change a parameter of the system. Then, we would see nearly spatially symmetric motion for long periods of 
time interspersed with short bursts of spatially asymmetric motion. 

Rayleigh-Bernard experiments along these lines appear to be feasible (L. Howe and R. Behringer, private com- 
munication). Also, we note that experiments observing on-off intermittency in synchronized electric circuits have 

been performed [3,4]. 
An example of a system with spatial symmetry that has been studied in the literature is the two-dimensional 

motion in the X Y-plane of a particle of unit mass in the potential [ 1] 

V ( X ,  Y) = (1 - X2) 2 + y 2 ( X  - p)  -k- K Y  4, (1) 

with a sinusoidal forcing in time along the X-direction, and having a coefficient of friction v. The quantity p in (1) 
will serve as the bifurcation parameter in what follows. The equations of motion are: 

dX 
- -  gx, 

dt 
dVx 

- v V x  + 4X(1 - X 2) -k- y2 -k- f0 sin(ogt), 
dt 

dY 
- -  Vy,  

dt 
dVr 

-- v V r  - 2 Y ( X  - p )  - 4 K Y  3, 
dt 

(2) 

where f0 and o9 are the amplitude and the frequency of the sinusoidal forcing. 
The full phase space is five-dimensional with coordinates X,  Y, Vx ,  Vr  and 0 = ogtmod 2-tr. Because of the 

reflection symmetry of the potential about Y = 0, we have that Y = V~, = 0 is an invariant manifold for the 
dynamical system Eqs. (2). The motion in the invariant manifold is governed by the equation 
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Fig. 3. h± as a function of p for the system in Eqs. (2) with v = 0.05, f0 = 2.3 and ~o = 3.5. This plot was obtained by the authors 
of [1]. 

d2X dX 
dt---- T + v - ~ -  + 4X(1 - X 2) = f0 sin(o9t), (3) 

which is obtained by setting Y = Vy = 0 in Eqs. (2). The system (3), with the parameters v = 0.05, f0 = 2.3 and 

o9 = 3.5 has been studied by the authors of  Ref. [1]. They show that, with these parameters, Eq. (3) has a chaotic 

attractor for the dynamics restricted to the invariant manifold. 

The evolution of  infinitesimal perturbations (3 Y, 8 Vv) transverse to the invariant manifold is obtained by varying 

the system of  equations in (2) about Y = 0. This yields 

dSY 
= * V r ,  

dt 

d*Vy 
= - v S V v  - 2 8 Y ( X ( t )  - p) ,  (4) 

dt 

where X ( t )  represnts the solution to Eq. (3). 

Let 

3(t) = ~/(3Y(t))  2 + (3Vy( t ) )  2 (5) 

represent the infinitesimal distance from the invariant manifold. 

We define the transverse Lyapunov exponent h± by 

1 
h± -= lim - log(8(t)) .  (6) 

t ----~ oo t 

The limit has the same value for almost every choice of  initial condition (X(O), Vx(0), 0(0)) on the chaotic 

attractor and almost every choice of  the orientation of  the initial vector (BY(0), ~Vr(O)). 

A plot of h± vs. p for the parameters considered in [1] is shown in Fig. 3. As p is increased through the critical 

blow-out value Pc ---- - 1.7887, the invariant manifold becomes unstable on average in the transverse direction (i.e., 

h± > 0). 



70 S.C. Venkataramani et al./Physica D 96 (1996) 66-99 

' I ~ i i , 

i i i / i i 

1000 2000 3000 ~ 5000 6000 

l 

Fig. 4. Time series for the on-off intermittent process. This is a plot of Y(t) obtained by numerically integrating the system of equations 
in (2) with v = 0.05, f0 = 2.3, 09 = 3.5 and p = -1.78 > Pc. 

We define the finite-time transverse Lyapunov exponents by 

h±(t)  = max log \ 8 - ( - 0 ) / / '  (7) 

where h is a unit vector along the direction of  the initial displacement transverse to the invariant manifold. The finite- 

time Lyapunov exponents depend on the initial conditions (X (0), Vx (0), 0 (0)) on the chaotic attractor embedded 

in the invariant manifold. To characterize the variations in h±(t ) ,  we define the quantity D by 

' [ ] D = -2 t~oclim t E[(/~±(t)) 2] - (E[h±( t ) l )  2 , (8) 

where the expectation (denoted by E) is over all initial conditions (X(O), Vx (0), 0(0)) according to the natural 

measure (here the natural measure is the measure produced by almost all initial conditions with respect to the 

Lebesgue measure in the chaotic attractor's basin restricted to the invariant manifold) on the chaotic attractor. We 

assume the limit in (8) exists. 

For the system to display on-off  intermittency, we require that h± be slightly larger than zero and that D not 

equal to zero. In this case, even if the system starts out near the invariant manifold it will (typically) eventually 

move away since the average Lyapunov exponent transverse to the invariant manifold is positive. We also need 

that there be fluctuations in the transverse finite time Lyapunov exponents (D > 0), such that there are periods 

of  time when the transverse finite-time Lyapunov exponent is negative. 5 As we shall see this will cause the 

system to spend long stretches of time near the invariant manifold although the invariant manifold is repelling on 

average. 

The authors of  Ref. [1] argue that if the strength K of  the quartic term in the potential (Eq. (1)) is sufficiently 
large, the confining effect of  the K y4 potential term will eliminate the possibility of  attractors 6 off the invariant 

manifold. As there is only one attractor in the system for p < pc, the system will display on-off  intermittency 
when p is slightly larger than pc. Fig. 4 shows a time series for Y(t )  that is obtained by numerically integrating 

the system of equations in (2) with K = 0.0075. Note that Y(t)  is close to the invariant manifold Y = 0 for 

5 Only very special systems would be expected to have D = 0. 
6 The authors of [ 1 ] show that there exists a pair of symmetrically disposed attractors off the invariant manifold for a smaller value of K. 
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long periods of  time which are interspersed with bursts where Y(t) moves away from the invariant manifold 

Y = 0 .  

In this system, a small amount of  additive noise will destroy the invariant manifold in the sense that a unit mass 

starting out with Y = V~, = 0 will no longer remain in the manifold Y = V~, = 0. As we expect physical systems 

to have additive noise, we study the effect of  noise on on--off intermittency (Sections 6 and 7). 

The system of equations in (2) has the special property that the equation of  motion in the invariant manifold, Eq. 

(3), is independent of the bifurcation parameter p. 7 We do not expect that this will always be the case. In a system 

without this property, we can still define a blow-out bifurcation if there is a critical value Pc of the bifurcation 

parameter p such that h i  = 0 at p = Pc and the system has a chaotic attractor in the invariant manifold. As the 

attractor in the invariant manifold can itself undergo bifurcations as we change p, the quantities h j_ and D are not 

necessarily smooth or even continuous functions of  p in the vicinity of  Pc. However, we expect that, in a general 

system, the functions h_k(p) and D(p) will have smooth envelopes. In this case, our scaling results (reported in 

subsequent sections) should hold with respect to the smooth envelopes for these functions. The expectation that 

h i ( p )  and D(p) have smooth envelopes is based on similar behavior observed in other cases. For example, if one 

plots the Lyapunov exponent h for the logistic map as a function of  the parameter for parameter values between 

the period doubling accumulation point and the final crisis, one observes that h abruptly drops to negative values in 

parameter intervals where the attractor becomes periodic, but the overall appearance of  an h versus parameter plot 

is that of a regular gradual increase with parameter that has a smooth upper bounding envelope. 

3. Results 

In the following, we study an on-off  intermittent processes, both with and without additive noise. We show the 
following: 

(i) The power spectrum P(co) of  an on-off  intermittent process with no noise scales as 

1 
P(w) ~ (9) ,m 

over a range of  frequencies 

2h__+_~ << to << D. (10) 
D 

This is illustrated in Fig. 5 which shows a numerically obtained power spectrum of the process I Y(t)l obtained 
by numerically integrating the system of equations in (2). 

(ii) The level sets Y = Y0, approach a Cantor set of  dimension ½ as h i  --+ 0 + (i.e., p --+ Pc from above). In 

particular, say we draw a horizontal line at Y = 1 in Fig. 4. We determine the scaled time coordinate r = h2 t  / D 

at the intersections of  Y(t) with the horizontal line. We examine the values of  the points of  intersection in a 

range 0 < r < 1. We divide this interval into equal subintervals of  length E. Let N(E) denote the number of 

these subintervals that contain points where Y(t) intersects the horizontal line. Then, for small positive ha_ 
(i.e., p near pc), N(~) scales with e as 

N(~) "~ 6 - 1 / 2  (11) 

7 Ashwin et al. [5] call such parameters normalparameters. Changing p does not affect the ergodic invariant measures of the dynamical 
system whose support is contained in the invariant manifold. Normal parameters arise naturally in the context of synchronization of 
identical chaotic oscillators. 
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for  E in a range 

D-- ~- << E << 1. (12) 

Fig. 6. shows a plot  o f  N(E)  as a funct ion o f  E obta ined by numer ica l ly  integrating the system of  equat ions  in 

(2). Similarly,  let  N1 (e) denote  the number  o f  subintervals o f  length E that contain points  where  Y (t) _ Y0. 

Then,  NI(E)  also scales with e as in (I 1) and (12). 
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(iii) In the presence of  additive noise, the bursts when the system leaves the vicinity of  the invariant manifold are 

more frequent. As a result, the range of  frequencies where P (w) ~ 1 /x /~  is smaller than in the case without 

noise, 

(I ( tl max D log , <<o9<<D,  (13) 

where a 2 is the noise power normalized by the amplitude of  a typical burst. With noise, N (e) again scales as • -1/2 

but now for • in the range 

D~ < < • < < r a i n \ D 2  log ~ ,1 . (14) 

Various mechanisms for intermittency have been studied in the literature. Pomeau and Manneville [17] study 

intermittency caused by a periodic orbit becoming unstable. This should be compared with on-of f  intermittency 

where the onset of intermittency occurs when a chaotic attractor (rather than a periodic orbit) loses stability. 

A mechanism for intermittency in systems with symmetry is the intermittency caused by small random (additive 

noise) or periodic perturbations in systems that possess homoclinic orbits that are attracting. This mechanism has 

been studied by Stone and Holmes [18,19]. They show that the distribution of  laminar phases has an exponential 

tail. This kind of  intermittency is driven by the noise or periodic perturbations unlike on-of f  intermittency. Also, 

the distribution of  laminar phases has an exponential tail unlike in on-off  intermittency where the distribution of 

laminar phases has a power-law tail [14]. 

On-off  intermittency has been studied by various authors [2-16]. Fujisaka et al. [6] looked at the power spectrum 

of an on-of f  intermittent time series without any additive noise. They predicted the noiseless scaling relation (9) 

for the power-spectrum. However, they were unable to observe this relation in their numerical simulations. 

Heagy et al. [ 14] studied on-of f  intermittency in one-dimensional maps multiplicatively coupled to a driving 

signal that is either chaotic or random. They looked at the onset of  intermittency, the scaling of  the mean duration 

of  a laminar phase (i.e., a time interval between bursts) and the distribution of the durations of  laminar phases. As 

we will discuss later, the distribution of  the duration of  the laminar phases that these authors obtained is consistent 

with our result (ii) that the level sets approach a Cantor set with a dimension Do = ½. Plattet al. [15] looked at the 

effect of additive noise on these quantities using an elastic barrier approximation. The elastic barrier approximation 

consists of treating the effect of noise by placing an impenetrable barrier at the noise level. 8 We do not make 

this approximation. Our result (14) is consistent with the location of  the cutoff found using the elastic barrier 

approximation [15], and we also obtain the precise functional form of the cutoff (Eq. (A.74) and Fig. 11). This form 

is expected to be universal, and therefore may be testable in experiments. 

4. Continuous-t ime model 

Let (u j, u2 . . . . .  Um, u1 . . . . .  13n--m) be coordinates on the phase space of  an n-dimensional system with an in- 

variant manifold Vl = v2 . . . . .  I)n_m = 0.9 The dynamics depends on a parameter p whose value is such that 

the dynamics in the invariant manifold is chaotic. The system evolves as 

8 This approach has been used in [20] to study the effect of noise on the transient time that a system spends near an invariant manifold 
in the riddled basin case. 

9 One cannot always find coordinates globally on phase space such that the invariant manifold has this special form. We assume this as 
it makes our arguments easier to state. Our conclusions are valid even if we cannot find coordinates with the property that Vl = v2 = 
. . . .  On-m = 0 is an invariant manifold. 
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u i ( t )=u i (Ul (O)  . . . . .  um(O),vl(O) . . . . .  Vn-m(O), t ,p) ,  1 < i  < m ,  

V i ( t ) = V i ( U l ( O )  . . . . .  Urn(0 ) ,  V l ( 0 )  . . . . .  Vn-m(O), t ,p) ,  1 < i  < n - m ,  (15) 

where (u 1(0) . . . . .  Um (0), vl (0) . . . . .  Vn-m (0)) are the values of  the initial conditions. Since Vl = v2 . . . . .  

Vn_ m = 0 is an invariant manifold, we have 

vi(ui(O) . . . . .  urn(O), 0 . . . . .  0, t, p) = 0 for all t and 1 < i < n - m. (16) 

Linearizing the equations in (15) for initial conditions close to the invariant manifold, we have 

3vi (t) ~ Z M(t ) i j  8vj (0), (17) 
J 

where M(t )  is a (n - m) × (n - m) matrix defined by 

0 

0 vj CO) (o) lln-m (o)=o" M(t ) i j  = vi (u 1 (0) . . . . .  Urn (0), 1) 1 ( 0 )  . . . . .  1)n-m (0) ) ]Vl  

(18) 

The matrix M(t )  depends on the initial conditions (Ul . . . . .  urn) in the invariant manifold and the value of  the 
parameter p. We assume that there is a critical value Pc such that for p < pc, the invariant manifold is stable on 

average in the sense that the transverse Lyapunov numbers given by the eigenvalues of  the matrix 

Q = lim [Mx( t )M(t )]  1/2t (19) 
t--~oo 

are all less than unity. Oseledec's multiplicative ergodic theorem [21,22] guarantees the existence of  the limit in 

(19). 
For p > Pc with p - Pc sufficiently small, we assume that one of  the eigenvalues of  Q exceeds 1 slightly, while 

the other eigenvalues are less than one. Under these conditions, it is reasonable to suppose that for not too small t, 

the eigenvalue of  M(t)  with the largest modulus, denoted by ).(t) (If a pair of  complex conjugate eigenvalues have 

moduli greater than one, we can choose either of  them.), is such that I~-(t)] 1/t has a modulus that fluctuates about 1 

and all the other eigenvalues have a moduli whose tth root is less than one. 

Ashwin et al. [5] show that this argument can be made rigorous. If  we assume that p is a normal parameter for the 

dynamical system and the chaotic attractor in the invariant manifold is a Sinai-Bowen-Ruelle (SBR) attractor, then 

Pc is the critical value where the largest normal Lyapunov exponent for almost every initial condition is ASBR > 0. 

Further, as p is a normal parameter, ASBR(P) is a continuous function of  p that goes through 0 as p goes through 

Pc. Therefore, for p < Pc, all the normal Lyapunov exponents are negative and consequently all the eigenvalues 

have moduli less than one. For p > Pc with p close to Pc, only the largest Lyapunov exponent is positive and all 

the others are negative. Therefore, one of  the eigenvalues fluctuates about 1 while all the other eigenvalues have 

moduli less than I. If  we look at the deviation ~(t) from the invariant manifold 

3 ( t ) = ~ j  (Svj(t)) 2, 

at sufficiently large time, we have 

6(t) ~ [~.(t)[a(0). 

)~(t) is related to the transverse Lyapunov exponent h± by 

1 
h± = lim - log(lZ(t)]). 

t ~ o ,  t 

(20) 

(21) 

(22) 
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As discussed earlier, if h± is positive and has a sufficiently small value and if there are fluctuations in log([),1) 

(i.e., D > 0), 3(t) is an on-off  intermittent process. Therefore, though the full phase space is n dimensional, the 

deviation from the invariant manifold can be modelled by the one-dimensional equation 

d6(t) 
- -  h(t)3(t) ,  (23) 

dt 

where 

d 
h(t)  = - ~  log(l~.(t)[). (24) 

The quantity h(t)  has a positive time average but if this average is small enough, h(t)  varies chaotically from 

positive to negative values. From the above discussion, we expect Eq. (23) to be a good model close to the invariant 
manifold. We generalize this to model a continuous-time intermittent process x (t) in the presence of additive noise 

by 

dx 
- -  = ( h i  + f ln l )x  + cln2, (25) 
dt 

where h± is the transverse Lyapunov exponent,/~nl is a zero mean chaotic process that simulates the fluctuations 

in the finite-time transverse Lyapunov exponent and crn2 represents the effects of noise in the system. The quantity 
(h± + flnl) in (25) is to be identified with the quantity h(t)  in (23). 

The chaotic process n l has a characteristic time scale beyond which its autocorrelation is negligible. By making 
h± sufficiently small, the typical time between bursts can be made long compared to the autocorrelation time of the 

chaotic process nl. Thus, for h± sufficiently small (i.e., (p - Pc) > 0 sufficiently small) we are concerned with 
time scales much longer than the autocorrelation time of n l. In this case, we can approximate n l as white noise and 

we take it to have unit variance. The process n2, which simulates the noise in the system can also be taken as unit 

variance white noise and is uncorrelated with n l. Even if the noise n2 had temporal correlations, for sufficiently 

small h i  they can be neglected. 
We expect that Eq. (23) should be modified for large 6(t) as Eq. (17) is only approximately true away from the 

invariant manifold. For a real system, there will be non-linear corrections to Eq. (23) that keep the motion bounded. 

These corrections will be important only when the system is far away from the inariant manifold. We incorporate 
the effect of these non-linear±ties in our model by having reflecting (no flux) boundary conditions at x = 1 and at 

x = - 1 .  In the limit h± --+ 0, the system will remain in the vicinity of the invariant manifold most of the time and 
will burst away very infrequently. Therefore, the exact details of the non-linear±ties that keep the motion bounded 

are not important in determining the scaling dependence of the process, and the results that we derive for long time 
scales from our model with reflecting boundary conditions at x = 4-1 are expected to be universal for small h±. 

For small time scales, we can no longer approximate n l by white noise as the correlations in the chaotic process 
h(t) in (23) become important. Let rc denote the correlation time of the chaotic process h(t). We take rc ~ D-1 

This is also the order of magnitude of the time it takes for the process to diffuse away from the boundaries i.e., for 

properties on this time scale, the exact details of the non-linear±ties that keep the motion bounded become important. 
Therefore, we expect that the scaling results we derive from our model are universal only in the frequency range 
co << D, i.e., for time scales r such that 

r >> D -1 . (26) 

The transition probability density p . ( x ,  t : x0) is defined as the probability density of x( t )  having a value 
between x and x + dx given that x(0) = x0. The transition probability density for the process in Eq. (25) satisfies 
the following Fokker-Planck (Forward Kolmogorov) equation (see Ref. [23] for details): 
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Op,(x, t : xo) 1 0 2 0 
= --~X t " X0)] -- -~x[a(x)p.(x, t : X0)], Ot 

where the drift coefficient a(x) and the diffusion coefficient b(x) are given by 

a(x) = (h± 82 + T )  x, 

(27) 

b(x) = (/~2x2 d- 0"2) 1/2. (28) 

If P0 (Y) is the initial probability distribution, the probability distribution p (x, t) at a time t is given by 

p(x,  t) = f dy p . (x ,  t : Y)ff0(Y). (29) 

Therefore, the probability distribution satisfies the forward equation 

Op(x, t) 1 02 0 
Ot -- 2 Ox 2 [b2(x)p(x' t)] - -~x[a(x)p(x, t)]. (30) 

The conservation of probability equation is given by 

Op OF 
o--7 + -#;x = o, (31) 

where F is the probability flux. Comparison with Eq. (30) yields 

r(x,t)  = - ( 2x2 +0"2) 3P(x't)Ox + (h± ~2 ] - y / x p ( x ,  t). (32) 

A reflecting boundary condition at x = Xb is 

F(Xb, t) = 0. (33) 

5. Noise-free model  

In this section, we study the on-o f f  intermittent process in Eq. (25) when there is no additive noise. We establish 

the results in Eqs. (9)-(12) of  Section 3. 
I f  there is no noise in the model, we can set 0- = 0 in Eq. (28). If  we start out at t = to with x0 > 0, then x(t)  

is positive for all subsequent time t. Therefore, it is sufficient to consider x in the range [0,1]. It is convenient to 
introduce the variable z = - log(x). Expressing (30) and its associated boundary conditions in terms of the variable 

z gives the forward Kolmogorov equation for p(z, t), 

_ f12 __O2P -k- h±0-~ p , (34) Op 
Ot 2 Oz 2 oz 

with the boundary conditions 

and 

p(z , t )  ~ 0 asz  --+ oo, 

o (z + ,,] (35, 
0Z z=0 



S.C. Venkataramani et al . /  Physica D 96 (1996) 66-99 77 

From the definition of the quantity D, Eq. (8), we see that for the model in Eq. (25) with nl being unit variance 
white noise, we have D =/52/2.  As the boundaries are reflecting, the total probability of finding x between 0 and 1 
is unity independent of time. For long times the probability distribution of the variable z will tend to a steady state 
value Pss(Z) which is determined by demanding that the flux vanish for all z. This implies, 

8Pss(Z) 
D + h±Pss(Z) = O. (36) 

Oz 

We can solve (36) for the steady state probability distribution of z to obtain 

P s s ( z ) = h ± e x p (  hDZ ) - - -  . (37) 

5.1. Power spectral density 

We consider the autocorrelation for the process (x (t)) k where k is an arbitrary positive exponent. The autocorre- 
lation is given by 

R(r)  = E[(x(t))k(x(t + r))k], (38) 

where E [.] denotes the expectation over all realizations of the random process x (t). Then, 

OO OO 

R(r)  = f dz Pss(z)e -kz f dz 'p.(z ' ,  r" z)e -kz', (39) 
t ¢ -  I /  

0 0 

where p.(z ' ,  t : z) is the transition probability density. Then, from Eq. (34), p.(z ' ,  t : z) satisfies the forward 
Kolmogorov equation 

DO2P.(Z ', t " z) + h±Op.(z', t : z) 
Oz I2 Oz I 

with the initial value condition 

p.(z' ,  0 : z) = 6(z' - z), 

and boundary conditions 

p,(z  ~, t : z) ---> 0 as z' --> oo, 

and 

Op,(z', t • z) 
Ot 

ID Op, (z', t : z) ] + h ± p . ( z ' , t  : z) = 0 
z~=0 

for all t. Let us define a new function v(z r, t) by 

f e_kz v(Z', t) = dz Pss(Z) p.(z  , t : z). 
0 

Then, multiplying Eq. (40) by Pss(Z) exp(-kz)  and integrating over z gives 

D 021)(Z ',_t) + h± Ov(z', t) _ Ov(z', t) 
OZ I2 OZ t Ot 

(40) 

(41) 

(42) 
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with the initial condition 

v(z 1,0)=-~-exp - - - + k  z' , 

and the same boundary conditions as p,(z t, t : 
autocorrelation is given by 

R(r) = f v(z', r )e  -kz' dz'. 
t l  

0 

We next introduce the Laplace transform of the autocorrelation function by 

OO 

-R(s) = / R(t)e -st dt. 

0 

Then, in terms of the function v(z r, t), we have that R(s) is given by 

O~ 

R(s) = f ~(z', s)e -kz' dz', 

(43) 

z). From Eq. (39) and the definition of v(z', t), Eq. (41), the 

(44) 

(45) 

(46) 

(49) 

(50) 

(51) 

(52) 

P(r) ---- E[(x(t))k(x(t q- r))  k] -- (E[(x(t))kl) 2. 

If U(s) is the Laplace transform of P(t), we have 

(E[(x(t))k]) 2 
-U(s) = --K(s) 

s 

and U(s) has no singularities in the right half s-plane or the imaginary axis. Therefore, 

P(w) = U(iw) + U(- iw)  = R(s = io9) + R(s = - iw),  

by Eq. (49). If we take the limit hA ~ 0 with o9 << D in such a way that ogTo is finite, we get 

--P(og) = ( q / 8 )  x/(1 + (o9T°)2)1/2 - 1 D - ~  ogTo 

Therefore, in the range D >> o9 >> To 1 = h2/4D, we have 

(48) 

0 

where ~(z', s) is the Laplace transform of v(z', t). We obtain ~(z I, s) by taking the Laplace transform of Eq. (42) 

and solving the resulting ODE in z ~. From this, we get 

-- 1 [ h A  4kD ] 
R ( s ) =  D k Z + h ± k - s  2kL)~h± + ( 1 - q ) ( 2 k D + h ± ( l + q ) )  ' (47) 

where q = v / l +  sTo and To = 4D/h 2. Since limr--,~ R(r)  = (E[(x(t)k]) 2 • O, R(s) has a pole at s = 0 and 
the Fourier transform of the autocorrelation has a 8-function component at ro = 0. To remove this delta function, we 
define the power spectral density (psd)P(w) as the Fourier transform of the autocovariance P ( r )  which is given 

by 
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i.e., the power spectral density scales as o9-1/2 for h 2 / D  << o9 << D. Note that the scaling behavior and scaling 

range are independent of  the index k. 
As discussed in Section 4, for long time scales, i.e., for o9 << D, we expect that the scaling results obtained 

from our model are universal. The behavior of the process for these time scales is independent of  the exact details 

of the chaotic process in the invariant manifold and the non-linearities that keep the process bounded. Therefore, 

we expect that Eqs. (51) and (52) will hold for all on-of f  intermittent processes without additive noise in the limit 

h± --+ 0. This demonstrates our results in item (i) of Section 3. 

5.2. Fractal dimension 

As we let h i  ~ 0 +, the set of  time intervals when the intermittent process takes on values above a given 

threshold approaches a fractal if we rescale time appropriately. We choose the threshold at x --- 1 and rescale time 

by r = h2t /D.  We look at the process in the range 0 < r < 1. If the fractal dimension of  the limiting set is d, the 

number of  time intervals of  length E needed to cover the set scales as N(¢) ~ ¢-d .  The total number of  intervals of 

length E in the interval 0 < r < 1 is E-I .  Therefore, the probability P (~) that a randomly chosen interval of  length 

is a part of  the over of  the limiting set is given by 

N(E) El_d. (53) P(E) ~ ~-1 

Thus, we can calculate the fractal dimension d if we evaluate P(E). 

After a sufficiently large time tm, the variable z = - log(x) is distributed according to the steady state distribution 

Pss (z) independent of  the inital conditions. Then P (E) is the probability that there exists some t ~ [tin, tm+ De~ h 2] 
such that x(t) > 1. This is the same as the probability of  being absorbed at x = 1 in an interval 0 < r < 

if we start off with the steady state distribution and have absorbing boundary conditions at x -- 1, i.e., at 

z = 0 .  
Therefore, we solve 

Op(z, t) 02p(z, t) Op(z, t) 
- - - - D - -  + h ± - -  (54) 

Ot Oz 2 Oz 

with absorbing boundary conditions at z = 0 

p(0, t) = 0 for all t, (55) 

no flux as z ---> oo, i.e., 

p(z, t) --+ 0 as z --+ oo, (56) 

and the initial condition 

p(z, o) = pss(Z). (57) 

Let W(t) be the probability of  getting absorbed in the time interval from zero to (unscaled) time t. Then, 

O~ 

W(t) = 1 - f p(z, t) dz. 

o 

(58) 
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Let us introduce W(s), the Laplace transform of W(t). From Eq. (58) we obtain 

OO 

__ f W(s) = - - -fi(z, s) dz, (59) 
s 

0 

where ~(z, s) is the Laplace transform of p (z, t). Taking the Laplace transform of Eq. (54) and solving the resulting 
ODE with the appropriate boundary conditions, we obtain 

t zt +   +4ostz/l 
-~(z,s) = Dss exp - - - - ~  - e x p  2D " (60) 

ThUS, 

2 
W(s) = (61) 

where To = 4D/h~ as defined in the previous section. For sTo >> 1, i.e., time scales such that t << To, 

2 
W(s) = (62) 

Taking the inverse Laplace transform, we get 

4~/ t W(t) = ~rl"o (63) 

for t << To. Therefore, P(E) = W(DE/h~) implies 

P(E) ~ E 1/2 (64) 

for E << 1. If P(E) ~ E x, the fractal dimension d = 1 - x by Eq. (53). Therefore, d = 1/2. 
By Eq. (26), the results we derive from the model in (25) are universal only for t >> D -1, i.e., E >> h~/D 2. 

Therefore, for a general on-off  intermittent process, N (E) scales as e-1/2 for E in the range h~_/D 2 << E << 1. This 

demonstrates our results in item (ii) of Section 3. 

The result we obtain that the fractal dimension of the limiting set is Do = 1 is consistent with the results obtained 
by Heagy et al. [14] for the distribution of the length of the laminar phases. Let N(E) be the number of intervals of 

length ~ that are needed to cover the set of bursts. For h~/D 2 << e << 1, our results imply 

N(E) 
N(2E) -- (65) 

However, 

N(2e) ---- N(e) ( l  - b(e)), (66) 

where b(E) is the probability that there is a peak in the interval [(a + 1)E, (a + 2)e] given that there is a peak in 
[aE, (a + 1)e]. Every pair of such peaks will require two boxes in a cover by intervals of length E but will only 
require one box in a cover by intervals of size 2e. Comparing Eqs. (65) and (66) shows that, in the range of E where 

Do = 1/2, 

1 
b(e) = 1 - ~ .  (67) 
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Let/7(E) denote the probability of having a laminar phase of a length greater than E. Since b(E) is the conditional 

probability that we have a laminar phase of length between E and 2E given that we have a laminar phase of length 

greater than 6, we obtain 

/7(6) - / 7 ( 2 6 )  
b(e) = (68) 

/7(~) 

Eqs. (67) and (68) together yield 

/7(26) 1 
/-/(6) -- x/2 (69) 

independent of ~ in the range where N(E) --- 6 -1/2. Therefore, 

!"7(6) = /706-1 /2 ,  (70) 

where/7o is a constant. If A (0) is the probability density of having a laminar phase of (unscaled) length 0, we have 

OG 
t ~  

17(6)= / A(O) dO. (71) 

D,/h  2 

Using Eq. (70), we obtain 

A(O)- /7°~/D0-3/2 (72) 
2h± 

for 0 << D/h 2, which is consistent with the result obtained in [14]. 

6. On-off intermittency in noise 

In this section we present analytic results derived from the continuous-time model in Eq. (25). The details of the 

calculations are spelt out in Appendix A. Eq. (25) models the deviation from the invariant manifold for an on-off  
intermittent process with a transverse Lyapunov exponent h±, with D =/~2/2  in additive noise with power cr 2. We 

restrict the range of x by having no-flux boundary conditions at x = 4-1. 

As the process x(t) takes on both positive and negative values we consider the power spectra of the processes 
x 2k with k integer. By the results for the noise free case where the scaling behavior was independent of the index k, 

we expect the results for the power spectrum will depend only weakly on k. In particular, we expect that the scaling 

exponent and range will be independent of k. Therefore, we only consider the case k = 1 in Appendix A. We define 
the autocorrelation R(r)  by 

R(r)  = E[x2(t)x2(t + r)], (73) 

where E [.] denotes the expectation over all realizations of the process x (t). In Appendix A, we derive an expression 

for R(s), the Laplace transform of the autocorrelation R(r)  which is given by Eqs. (A.18) and (A.36). From this, 
we obtain an expression for the power spectrum P (w) and derive the scaling relation 

if(o)) ~ 1/~r~ (74) 

for 

D > o) > O)c, (75) 
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where the cutoff frequency oac is given by 

COc = max ( ~ - ~ ) ] )  (76) 

as we show in Appendix A. This is the first part of our results in item (iii) of Section 3. 

We can also determine the fractal dimension of the set of time intervals when the on-off intermittent process 

crosses a threshold. As we argue in Section 5.2, we need to calculate the probability P(~) that a randomly chosen 

interval of rescaled length e is a part of the cover of the set of times when the process takes on values on or above 

the given threshold. We choose the threshold at Ixl = 1. As we discuss in Section 5.2, this probability is the same 
as the probability of getting absorbed at x = 4-1 in an interval of length D e/h  2 if we start out in the steady state. 

We evaluate this probability in Appendix A (see Eq. (A.81)) to obtain 

P(E) '~  E 1/2 (77) 

for 

h 2 / D  2 << e << h2/Owc,  (78) 

where Wc is given by Eq. (76). By the discussion in Section 5.2 (Eq. (53)), N(E) -~ E 1/2 for h ~ / D  2 << E << h2/D~oc 

which is the second part of our result in item (iii) of Section 3. 

The discussion in Section 5.2 also implies that the distribution of the lengths of the laminar phases in noise is 
given by A(O) ~ 0 -3/2 for 0 << wc 1. This is consistent with the results obtained in [15]. 

7. Discrete-time model 

In this section, we introduce a discrete-time model that displays on-off  intermittency and incorporates the effects 
of additive noise. Our motivation for looking at this discrete-time model is that it is particularly convenient for 
numerical simulations. We simulate this model numerically and we present the results of these simulations. 

A straightforward way to generalize Eq. (23) to discrete-time systems is by [14] 

Yn+l = ehnyn for smallyn, (79) 

where hn is a chaotic process. 
Using this approach, we model a discrete-time intermittent process restricted to [-1,1] and with additive noise by 

I ~nXn -at- En if )~nXn q- ~n ~ [ -1 ,1 ] ,  
Xn+l = [ Xn otherwise, (80) 

wh ere  )~n is generated by a discrete-time chaotic process and En models the additive noise in the system. As discussed 

in Section 4, the behavior of the process at large time scales is independent of the details of how the processes ~-n 

and E n are generated. In the limit h_L ~ 0, we are interested in time scales much longer than the correlation time 
of the chaotic process Xn. Therefore, we can choose An to be any random process such that, if hn -- log(~.n), then 

(1) hn has a small positive mean. 
(2) hn has non-zero variations about its mean so that it is sometimes negative. 
To satisfy these requirements, we generate the process ~-n by 

A l with probability or, 
~-n = ,6 with probability F, 

(81) 
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where A > 1 and F = l - ot > or. Let h = E[hn]. Then, 

= (F - u)K,  (82) 

where K = log A. We have a blow-out bifurcation when h changes from a negative to a positive value, i.e., when 
1 

The process En models the additive noise in the system. We choose en to be a sequence of independent identically 
1 distributed (i.i.d) random variables that take on values + p  with probability ~. 

Consider the process Xn generated by sampling the continuous-time process in (25) with a period To. Then the 
discrete-time process xn is given by Xn = x(nTo).  If we set a = 0 in (25), we have 

\ x ~ O )  J_l = h±To, 

E log \ x(nT-~ ] - h m T o  =/~2T0. (83) 

If we set ~ ---- 0 in (25), for mT0 << h~ -1 and m >> 1 we obtain 

E[ (x(  (n + re)To) - emh m T° x (n  To) ) 2] ---- mcrETo . (84) 

Comparing Eqs. (83) and (84) with the model in (80), we see that the process xn in (80) models a sampled 
continuous-time intermittent process if we make the identifications 

-fi = h ±  To, 

log2(A) ~ 4 u F K  2 =/~2T0, 

/ 92 = crZT0 • (85) 

We define the autocorrelation of the discrete-time process Xn by 

rn = E[xpXn+p]. (86) 

Then, rn = R(nTo) where R(r)  is defined in (38). 
The autocovariance of the process Xn is defined by 

Pn = rn - (E[xn]) 2, (87) 

and the discrete-time Power Spectral Density /3(eiw), is the Discrete Fourier transform of the autocovariance. 
Therefore, 

/3(eiW) = Z pne-inw" (88) 

If To is much smaller than the relevant timescales, the continuous-time process x ( t )  is essentially a low-pass signal. 
By the Nyquist Sampling theorem [25], we obtain 

To T00 (89) 

for w << 7r where we can neglect the effects of aliasing. Using the identifications in (85) and Eq. (89), we can 
translate the results in Section 3 for the continuous-time model to the corresponding results for the discrete-time 
case. We obtain the following points. 
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(1) For a discrete-time on-o f f  intermittent process without noise we have: 
(a) The power spectral density scales according to /3(eiw) --, l v ~  for over the range (y - ~)2 << 09 << 

min(K 2, 1). 

(b) Let .M denote the set of  discrete-time indices n such that xn is larger than or equal to a threshold a. We 
determine a scaled time coordinate r = (}, - ot)2n and examine the set of  these values in the limit h --+ 0. 

Then, the set of  rescaled time indices when the process Xn is above a given threshold approaches a Cantor 
set. The Cantor set has a box counting dimension Do = ½. If  N(e)  is the number of  boxes of  length 

required to cover the set of  rescaled time indices where Xn > a, we have the scaling result N(e)  --- ~-1/2 
f o r ( y  _ ~ ) 2  <<E << 1. 

(2) In the presence of additive noise, the power spectrum scales as 1 / V ~  in the range m a x ( K 2 / l o g 2 ( K 2 / p 2 ) ,  (V - 
¢~)2) << o9 << min (K 2, 1) andN(~)  scalesasE -1/2 in therange ( y - c z )  2 << E _< m i n ( ( y - c O 2 1 o g 2 ( K 2 / p 2 ) ,  1). 

The results in items l(a) and 1 (b) can be verified analytically. 10 For the continuous-time power spectrum, the upper 

cutoff ogu is D and the identifications in (85) imply that the upper cutoff for the discrete-time model should be K 2. 
However, the cutoff for the power spectrum obtained by a FFT could be lower because of the effects of aliasing [25] 

and the fact that we need the approximation 

e iw -- 1 ~, iw, (90) 

to get the 1 ~ scaling. 11 Therefore, the upper cutoff is 

ogu = min(K 2, "~ 0.1) (91) 

if we allow a 10% error in approximation (90). 

7.1. Numerical  experiments 

Fig. 7 is a time series obtained by numerically simulating the process in Eq. (80). The process ~'n is generated 
according to Eq. (81) with .4 = 1.25 and (y - c~) = 1/128. The additive noise E n is generated by an independent 

random number generator. It takes on values + 10 -6 at each time step. The range of Xn is restricted to [-1,1 ]. 
Fig. 8 shows the power spectrum for x 2 where Xn is the discrete-time on-o f f  intermittent process in (80) with 

.4 = 4.0, p = 10  - 1 2  and (y - or) = 1/1000. The dashed line has the theoretical slope equal to - ½ .  The analysis 

predicts a scaling range 

5.7 × 10 -4 << 09 << 1.0 x 10 -1,  (92) 

and the data agrees well with the predicted slope and scaling range. With these values of  the parameters, K 2 > 0.1 

and so the upper cutoff is determined by the requirement that aproximation (90) be valid. 
Fig. 9 shows a numerically obtained plot to verify our scaling result of  the number of  boxes of  rescaled length e 

needed to cover the set of  rescaled time indices where IXn [ takes on values above a given threshold. The plot shows the 
number of  boxes needed to cover the set of  time indices where the process Xn in Eq. (80) with .4 = 1.25, p = 10 -6 
and ( 2 / -  ~)  = 1/128 satisfies Ixnl > 0.8. The total number of  samples is 220 and we count the total number of  
boxes required for box sizes n in the range 23 < n < 22°. The rescaled length E of each box is given by 

E = ( 2 / -  ot)2n = 2-14n. (93) 

We have plotted both N ( e )  and e on logarithmic scales. 

10 See Appendix B. 
11 See Appendix B Eq. (B.20). 
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Fig. 7. Time series for a Discrete time on-off intermittent process with parameter values A = 1.25, p = 1 0  - 6  and (F - or) = 1/128. 
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Fig .  8. N u m e r i c a l l y  o b t a i n e d  p o w e r  s p e c t r u m  f o r x  2 w i t h  A = 4 .0 ,  p = 10 - 1 2  and  (V - a )  = 1 / 1 0 0 0 .  B o t h  the  a x e s  are  on  l o g - s c a l e s .  

The solid line has the theoretical slope of  _ 1 .  From Fig. 9, we see that N(e)  --~ e - U 2  over a range of E. Our 

analysis predicts that the range where N(e )  --~ E -U2 is 

6.1 x 10 -5 << E << 3.7 x 10 -2 .  (94) 

The numerically obtained plot in Fig. 9 is consistent with this prediction. 

8. Conclus ions  

In this paper we  introduce a continuous-time model  that displays on-o f f  intermittency and models  the univer- 

sal properties of  this kind of  behavior near a blow-out bifurcation. Using this model,  we  derive scaling results 
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Fig. 9. A plot of N(E) as a function of E. The plot was obtained by numerically generating the process xn with the parameter values 
,6 = 1.25, p = 10 -6  and (y - or) = 1/128 and taking the set of  time indices where Ixnl is larger than or equal to 0.8. The solid line is 
the theoretical scaling result and it has a slope equal to - ½. 

(summarized in Section 3) for the power spectrum of the intermittent process and for the fractal dimension of the 
set of times when the process takes on values above a threshold both with and without additive noise. We compare 
our results to those reported in the literature. We also introduce a discrete-time model which displays on-off inter- 
mittency and incorporates the effects of additive noise. We numerically simulate this model and verify the universal 
scaling results we obtain from the continuous-time model. 
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Appendix A. On-off intermittency with noise 

We consider a continuous-time on-off intermittent process with additive noise. The forward Kolmogorov equation 
for p(x, t) is given by Eq. (30). We restrict the range o fx  by imposing no-flux boundary conditions at x = 1 and 
x = - 1. Therefore, 

l-'(x,t)lx=+l = 0 fora l l t .  (A.1) 

Define the linear operator Z3x by 

_~ 1 2 02 
~ x ~ ( x )  = a (x )  [~(x)] + xb (x):--~[~(x)], (A.2) 

z Ox" 
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where a(x) and b(x) are the drift and the diffusion coefficients defined in Eq. (28). Then, Eq. (30) can be rewritten 

as 

Op(x, t) _ E~xp(X ' t), (A.3) 
Ot 

where £~x is the linear operator adjoint to £x- In the steady state, 

Op(x, t) 
- -  = 0 ( A . 4 )  

Ot 

Therefore, 

~*x pss(X) = 0. (A.5) 

We can solve for the steady state probability distribution of x to get 

pss(X) = A(~2x 2 + ~2) h/~2-1/2, (A.6) 

where A is a normalizing constant. 

A.1. Power spectral density 

As we discuss in Section 7, we calculate the power spectrum of x2(t) where x(t) is the continuous-time on-off 
intermittent process in Eq. (25). The autocorrelation R(r)  is given by E[x2(t)x2(t + r)] (see Eq. (73)). Therefore, 

l 1 

R(r)  = f dx x2pss(X) f dy y2p,(y,  r :  x), (A.7) 
* J  

-1 --1 

where p , (y ,  r • x) is the transition probability density. The transition probability density satisfies the forward 
equation 

Op • (y, r " x) = L2tp,(y ' y  
r x )  (A.8) 

Or 

with the initial condition 

p,(y,  0 " x) =- &(x - y). (A.9) 

W e  can take the Laplace transform of the forwards equation to get 

s-fi(y, s " x) = E;-fi(y, s • x) + 8(x - y). (A.10) 

Laplace transforming (A.7) gives 

1 1 

- R ( s ) = f d x x 2 p s s ( x ) f d y y Z - P ( y , s ' x ) ,  (A.I 1) 

-1  -1  

where R(s) is the Laplace transform of the autocorrelation. Introduce the adjoint equation 

sx(s,  y) = £yX(S, y) + y2. (A.12) 
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Multiplying Eq. (A.12) by ~(y, s : x) and integrating over y, we get 

1 1 

f dy-~(y,s :x)(sx-£yX) = / dy-~(y,s" x)y 2. 
-1  -1  

Integrating by parts gives 

l 1 

f dy-~£yX= f dyX£ty-fi+ boundary terms, 
-1 - I  

and we obtain 

1 

Flb2 x _0X f dyx(s,y)(s-fi- £~-fi)- L- ~ ( )p~y 
-1  

1 

] ' f  - - X-if(Y, s) = dy--fi(y, s • x)y 2, 
-1  

-1  

(A.13) 

(A.14) 

where F(y, s) is the Laplace transform of the flux. As we have no flux boundary conditions for p,,  if we impose 
the conditions 

OX 
~ y = - I  ~--- = 0, (A.16) 

y--I 

and use Eq. (A.10), we have 

1 

X(X, s) = I dy-fi(y,s x)y 2. (A.17) o 

t o -  

- 1  

Therefore using Eq. (A. 17) in Eq. (A.7) we obtain 

1 

-R(s) = f dx X (x, s)x2pss(X). (A. 18) 
t /  

-1 

X (s, y) can be expressed in terms of hypergeometric functions. We introduce the variable 

f12y2 
v - (A.19) 

o. 2 , 

and define the function ~p(v, s) by 

gr (v, s) = X x/L-{, s for 0 > v > - o.--5" (A.20) 

Then, rewriting Eq. (A.12) in v and gz(v, s) gives 

02~(v,s) ~v 2 [~ ( ~-2 h± ) ] O~(v,s) ~ s o.2 v(1 -- v) + -- 1 + v + ~ - - ~ ( v ,  s) = -~--~v (A.21) 

with the boundary condition 

Olff(I),O1) S) tl--'--fl2/ff2 = O. (A.22) 

(A.15) 
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The solution to the homogenous equation 

d 2 f  
x ( 1 - x ) - - z - ~ + [ c - ( l + a + b ) x ]  - a b f = O ,  (A.23) 

(1x" QX 

regular at the origin, is 

f = F(a ,  b, c; x ) ,  (A.24) 

where 

ab a(a + 1)b(b + 1)x2 
F(a,  b, c; x)  = 1 + -(--~.c x + 1.2.c(c + 1) + (A.25) o D Q 

is the hypergeometric function [24]. Therefore, the solution to Eq. (A.21) is 

~p(v, s) = A(s)F( ix+,  ix_, 1/2; v) + ~0(v, s), (A.26) 

where 

± 4 - / h  2 + 2/32s h 
ix± = 2/32 (A.27) 

¢r0(v, s) is a particular solution and A(s)  is chosen so as to satisfy the boundary condition. We can find a particular 
solution of Eq. (A.21) by assuming the form 

~ro(v, s) = go(s) + vgl (s ) .  (A.28) 

We then obtain 

00(v, s) = s -  2h-] - 2/32 - " (A.29) 

Imposing the boundary condition (A.22) on (A.26) and using 

d ab 
~ x F ( a , b , c ; x )  = - - F ( 1  + a ,  1 + b ,  1 + c; x), (A.30) 

C 

which is an identity [24], yields 

o -2 1 

A(s)  = s(s  - 2h± - 2/32) F ( I  + ix+, 1 + ix_, 3/2; - /32/o-2)  (A.31) 

Therefore, the complete solution of (A.21) and its associated boundary conditions is 

o-2 [ ! (  F ( i x + , i x _ , l / 2 ; v )  ) v ]  
Or(v, s) = 1 - - (A.32) 

s - 2h~ - 2/32 F(1 + ~-~[-i-~__, 3-~; ~/32/o-2) ~ " 

It would appear that 7r(v, s) has a pole in the right half-plane at s = 2h± + 2/32. However, setting s = 2h± 4- 2/32 
in (A.27) gives ix_ = - 1. The hypergeometric functions have the properties, 

a 
F(a,  - 1 ,  c; x )  = 1 - - x ,  

c 
F(a ,  0, c; x) = 1 (A.33) 
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Fig. 10. U ( s )  as a function o f s  for real s. The parameters have values fl = 1, hj .  = 10 -3  and tr = 10 -6 .  The solid line has a slope equal 
1 to -- 3" 

(see (A.25), [24]). Thus at s = 2h± + 2/32, we have 

F(ot+ ,  or_, 1 /2 ;  v) = 1 - 2a+v,  

F(1 + or+, 1 + or_, 3/2; v) = 1. (A.34) 

Therefore, 

1 ( 1  - F(a+, or_, 1/2;  v) "~ _ v 
s F ( l+~+, i -_+_- - -~_ , -~ i -_ f lZ /~r2 )  } ~ - ~ = 0  (A.35) 

at s = 2h± + 2/32, and so we do not have a pole in the right half-plane. We can now get an expression for X (x, s) 

from (A.20) and (A.32) 

g (x, s) = s - 2h± - 2/32 1 - F(1 + or+, 1 + or_, 3/2;  - - /32 /0"2 )  ] + ~-2 " (A.36) 

Eq. (A. 18) gives an expression for R (s) which can now be evaluated using the expression for X (x, s) in (A.36). As 

we discussed in Section 5.1, R ( s )  has a pole at s = 0. Therefore, we use Eq. (49) for U(s ) ,  the Laplace transform 

of the autocovariance. This function does not have any singularities in the right-half s-plane or the imaginary axis. 

Fig. 10 shows a log-log plot of  U(s)  as a function of  s (for real s) for/3 = 1, h± = 10 -3 and ~r = 10 -6. It was 

obtained by numerically integrating (A. 18) for R(s)  and removing the contribution of  the pole at s = 0. From the 

figure, we see that there is a comer frequency ogc such that U ( s )  is a contant for s < wc and U ( s )  ~ 1 / ~  for 

S > O )  c. 

The hypergeometric functions satisfy 

F ( a ,  b, c, x) = (1 - x ) - b F ( b ,  c - a, c, - x / ( 1  - x ) ) .  (A.37) 

as an identity [24]. Furthermore, 

F ( c ) F ( c  - a - b) 
F ( a ,  b, c, 1) = (A.38) 

F ( c  - a ) F ( c  - b) 
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i f R e a l ( c  - a - b) > 0 [24]. Therefore, if Ivl >> 1, v < 0 andRea l (a  - b) > O, 

F ( a ,  b, c, v) ~ (1 - v) -b  P ( c ) F ( a  - b) (A.39) 
F ( a ) F ( c  - b) 

with corrections of the order 1Iv  b+l . For s >> h 2 / D ,  we have a+ = ± v / ~ f l  2. 

F ( a ,  - a ,  1/2, - z  2) = cosh(2a log((1 + z2) 1/2 + z)) (A.40) 

is an identity [24]. Using approximation (A.39) for F ( a ,  - a ,  1/2, - z  2) gives 

F ( a ,  - a ,  1/2, - -Z 2) ~ (1 + z2) a. (A.41) 

Comparison with Eq. (A.40) shows that this is valid only when 2a log((l + z2) 1/2 + z) >> 1. As z .~ f l / a ,  we 

require that 

s >> 2fl2 [log (afl-~) ] -2 (A.42) 

Using approximation (A.39) in (A.36) with s << 2/32 and h± << 2/32, we obtain 

X ( x , s ) ~ - ~  2~+(1+/32 /a2)_1_ ,~_  - 1  +~-~ . (A.43) 

Substituting in Eq. (A. 18) and expanding in powers of a//3 yields 

+ O (A.44) 
R(s )  -= 2h±//32 q- 1 - or_ - ~  " 

Therefore, R (s) "-~ 1/,g~ in the range where all the approximations are valid. In this range, P (w) = R (io)) + R ( -  io)) 
implies that the power spectrum scales as 1/~/-w. From the above discussion and Eq. (A.42) we see that the scaling 
range for the power spectrum is given by Eq. (13). This proves the first part of our results in item (iii) of Section 3. 

A.2. Fractal dimension 

We want to evaluate P(E), the probability of being absorbed in a time interval of rescaled length E at x = 4-1. 
To evaluate this probability we consider the transition probability density p ,  (y, t • x) which satisfies the Backward 
Kolmogorov 12 equation [23] 

Op,(y ,  t : x )  
- £ x p , ( y ,  t : x ) ,  (A.45) 

Ot 

with absorbing boundary conditions at x = 4-1, 

p , ( y ,  t • - 1 )  = p , (y ,  t • 1) = 0, (A.46) 

and the initial condition 

p , ( y , O : x ) = 3 ( y - x )  f o r x E ( - 1 , 1 ) ,  (A.47) 

12 This is a differential equation for the transition probability density p(y. t : x) in the "backward" variable x. 
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which is true for all transition probability densities. We define a function q(x,  t) by 

1 
g ~  

q(x, t) = I dy p . ( y ,  t " x). (A.48) 
i i  

- 1  

Then, q (x0, t) is the probability of not being absorbed in a time t if we start out at x = x0. Eq. (A.45) gives 

3q(x, t) 
- -  -- £xq(x ,  t). (A.49) 

Ot 

The absorbing boundary conditions give 

q ( - 1 ,  t) = q(1, t) = 0, (A.50) 

and the initial condition implies 

q(x,0)  = 1 forx 6 ( -1 ,  1). (A.51) 

Taking the Laplace transform of Eq. (A.49) we obtain 

(£x - s)~(x, s) = - 1 (A.52) 

with boundary conditions 

~ ( -1 ,  s) = ~(1, s) = 0. (A.53) 

It is again convenient to introduce the variable v by 

152 
V ~-~ - - - -  2 (A.54) 

0 . 2  x , 

and define the function ~(v, s) by 

) (p(v,s) = ~  4"-L--v,s for0 > v > -or--- ~. (A.55) 

Expressing Eq. (A.52) and its associated boundary condition in terms of the new variables gives 

v ( 1 -  v) o2q~(v's)3v ~ + [~  ( -  1 + ~h ) ]Ocb(v 'S )v  3----~ + ~-~rb(v,S s) - 21521 (A.56) 

with the boundary condition 

( - £ , ) = 0 .  (A.57) 4 ' t  ,,2 s 

The solution to Eq. (A.56) is 

~p(v, s) = B(s)F(ot+, or_, 1/2; v) + 4b0(v, s), (A.58) 

where ot~ is given by Eq. (A.27). ~bo(v, s) is a particular solution and B(s) is chosen so as to satisfy the boundary 
condition. A particular solution of Eq. (A.56) is 

1 
~bo(v, s) = - .  (A.59) 

S 
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Imposing the boundary condition on the solution yields 

B(s) = - ( A . 6 0 )  
sF(e~+, or_, 1/2; -fl2/o-2)" 

Therefore, 

1 [ F ( a + , ~ _ ,  1/2;v)  1 
4 ~ ( v , s ) = -  1 -  

s [ F(ot+, a_,  1/2; - f l z / a z ) J '  
(A.61) 

and using the definition of 4~, we have 

F(ot+, t~_, 1/2;-f12x2/t72)] 
~ ( x ,  s )  = s (A.62) 

We start of with an initial probability distribution po(x) = Pss(X). The probability W(t) of being absorbed in a 
(unscaled) time t is given by 

1 

W(t) = l - f dx pss(X)q(x, t). 
1 

(A.63) 

Therefore, 

1 

dw , d, - f dxpss x  q   
-1 

(A.64) 

Using Eq. (A.49), we have 

dW(t) 

dt 

1 

f dx Pss(X)£x(q(x, t)). 
-1 

(A.65) 

Integrating by parts gives 

dW(t) 
dt 

1 

1~2, , , .Oq(x,t)] l 
f dx q(x, t)FJxpss(X ) + [q(x, t)F'ss(X)- 7o t X ) P s s , X ) ~ - -  x J - l '  
-1 

(A.66) 

where 

1 3 [b2(x)Pss(X) ] +a(x)Pss(X) Gs(x) -- 2 3x (A.67) 

is the probability flux in the steady state. Therefore,/-'ss(X) = 0. Also, by Eq. (A.5), 

C~pss(:¢) = o. (A.68) 

So we get 

dW(t) 
dt 

1 Oq(x, t) 1 
2 b2(x)pss(x) 3x -1" (A,69) 
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Fig. 11. s~ff(s) vs. s. The parameters have values/~ = 1, h± = 10 -2  and tr = 10 -6.  

Let W(s) be the Laplace transform of W(t). Laplace transforming the previous equation yields 

- -  I -  1 ~2 . . . .  a ~ ( x ,  s )  ] 1 
= + L- O tx)psstx).----ff-x---X j _ l  . (A.70) 

Eq. (A.62) along with the identity (A.30) and w(0) = 0 gives 

- -  1 2pss(1)(/32 + tr 2) F(1 + or+, 1 -t- tT_, 3/2; - f12 /02)  
W(s) = (A.71) 

s cr 2 F(ct+, or_, 1/2; - /32/ tr2)  

With absorbing boundary conditions at x = q-1, the probability of  eventually getting absorbed is unity independent 
of  the initial distribution. Therefore, W(t) --+ 1 when t --+ oo. This implies 

lira sW(s) = 1. (A.72) 
s----~ 0 

Using 

F(1 + or+, 1 + or_, 3/2; - - /32 /0"2 )  F ( I  + h//32, 1, 3/2; - - /32 /0"2)  
lira = (A.73) 
s--+0 F(ct+, t~_, 1/2; - /32/ tr2)  F(h//32, O, 1/2; - /32/ tr2)  ' 

we can evaluate the constant Pss (1). Therefore, 

- -  1 F F(h---//32'0'1/2;-/32/cr2) r ( l  +°t+' l - l -° t - '3/2;- /32/ tr2)]  
W(s) = - (A.74) 

s [r(l -k-h/~32, 1,3/2;  -/32/0"2) r (o t+,  or_, ~ ' 2 ;  _ - -~2 / -~  J " 

Fig. 11 shows a log- log plot of  s-W(s) as a function of s (for real s) with parameter values/3 = 1, h± = 10 -2 and 
cr = 10 -6.  We see that there is a comer  frequency wc such that sW(s) = 1 for s < Wc and sW(s) "-~ 1 /v f f  for 
s > we. We evaluate Wc by obtaining the asymptotes of  W(s) and finding their point of  intersection. 

For low frequencies, i.e., in the limit s --+ 0, Eq. (A.74) yields 

1 
W(s) = - ,  (A.75) 

S 

as the equation of the low-frequency asymptote. Taking a Taylor series expansion, we get 

F[h±//32, O, 1/2, - /32/tr2]  F[0,  0, 1/2, - /32/ t r  2] 
= + O(h±) .  (A.76) 

F[1 + h±//3 2, 1, 3/2,  - /32/tr2]  F [ l ,  1, 3/2,  - /32/tr2]  
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Using the approximation (A.39), we have 

F(1 + a+ ,  1 + or_, 3/2; -/32/0- 2) 0-2 
(A.77) 

F(ot+, ~x_, 1/2; -132/o "2) 2~+(0-2 + f12)" 

We also have [24] 

F[0,  0, 1/2, __fl2/0-2] 0 -2 sinh -1 (/3/0-) 
= (A.78) 

F[1,  1, 3/2,  -/52/0- 2] fl(fl2 + 0-2)1/2 • 

If/3/0- >> 1, we get 

sinh -1 (/3/0-) ~ log(2/3/0-). (A.79) 

We obtain the equation of the high-frequency asymptote for W ( s )  by substituting from the above equations in 
(A.74). This yields 

- -  V/2-f12 (A.80) 
W (s) = log(4flZ /0-2)s3/2 

as the equation of the high frequency asymptote. Therefore W ( s )  ~ s -3/2 for s >> Wc, so that w ( t )  ",~ t 1/2 for 

t << Wc 1 . From Eqs. (A.75) and (A.80), we obtain the expression for the comer  frequency in Eq. (76). From the 
discussion in Sections 4 and 5.2, we expect the results we derive to be universal only for E >> h 2 / D  2. Therefore, 

P(e )  = W ( D E / h  2)  " ~  e 1/2 (A.81) 

for 

h 2 / O  2 << E << h 2 / O w c .  (A.82) 

Appendix  B. Noise free discrete-time model  

We consider the process 

Xn+l = ~.nXn. (B.1) 

The process )~n is generated by i.i.d random variables that take on a value 1/A with a probability a and a value ,4 

with a probability F = 1 - c~, where ,4 >_ 1. The average Lyapunov exponent is denoted by h and is given by Eq. 
(82). If  we define the process Un by Un = - l o g ( x n ) / l o g ( A ) ,  we have 

Un + 1 with probability ~, 
Un+l = Un - 1 with probability F. (B.2) 

If  we choose x0 to be A -ra for some integer m, u0 = m and the process Un is a random walk on the lattice of 
integers. We restrict the range of Xn to [0,1 ] by replacing (B.2) by 

1 with probability u, 
Un+l = 0 with probability 3/ (B.3) 

if Un = 0. The process that is defined by Eq. (B.2) for Un > 1 and Eq. (B.3) for Un = 0 is a random walk on 
the integer lattice with a reflecting boundary at 0. Then, Xn = e -Ku.  is a discrete-time on-of f  intermittent process 
where K = log('4).  
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B. 1. Power spectral density 

The autocorrelation rn for the process Xn is given by Eq. (86). From this we have, 

rn = E[e -Kup e -Kun+p ]. (B.4) 

Let p(1, n : m) be the transition probability, i.e., the probability that Un+q = l given that Uq = m. If Pss(m) is the 

probability that Un = m in the steady state, we have 

O~ O~ 

rn = Z Z Pss(m)e-Km p( l '  n"  m)e -Kl .  
/=0 m=0 

The transition probability satisfies the equations 

(B.5) 

p ( l , n + l ' m ) = o t p ( l - l , n : m ) + y p ( l + l , n ' m )  f o r l >  1, 

p(0,  n + l ' m ) = y p ( 0 ,  n : m ) + y p ( l , n : m ) .  (B.6) 

In the steady state, 

Pss(l) = otPss(l - 1) + yPss(l + 1) for l > 1, 

Pss(O) = ypss(O) + yPss(1). 

(B.7) 

(B.8) 

These equations along with the condition 

O~ 

Z Pss(l) = 1 
l=0 

yield 

Pss( l ) - -  Y - ° t  ( ~ )  

Let 

(3O 

/5(I, Z : m) = Z p(l ,  n : m)z  -n 
n = 0  

be the Z- t ransform of p(l ,  n • m) with respect to n. Then, Eq. (B.6) gives 

(B.9) 

(B.lO) 

z [ ~ ( l , z ' m ) - p ( l , O ' m ) ] = o t ~ ( 1 - 1 , z : m ) + y / 5 ( l + l , z : m )  fo r l  > 1, 

z[/5(0, z : m) - p(0,  0 : m)] ----- y/5(0, z : m) + y/5(1, z : m). (B.11) 

Define 

a y 
17= -- ,  # = e  -K ,  F = o t t z + - - ,  

Y # 

Z -- V /~  -- 4ot~' ~ :  

-if(l, z) = Z ~(1, z : m)Pss(m)e -Kin. (B.12) 
m : 0  
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Using the initial condition on the transition probability 

p( l ,  0 • m) = 6[m, (B.13) 

and Eq. (B. 11), we have 

z[~(1, z) - (1 - r/)(O#) t] = u~( l  - 1, z) + y y ( l  + 1, z) for />_ 1, 

z[~(0, z) - (1 - q)] = y i ( 0 ,  z) + y i ( l ,  z). (B.14) 

We can solve Eq. (B. 14) imposing the boundary condition if(l, z) ~ 0 as I ~ oo to obtain 

p( / ,  z) = A~ I + B(r;Iz) t, (B.15) 

where 

a _ ( 1 - ~ 7 ) ( 1 - ~ e ) I  z z ] 
z - 1  ' 

B = ( I -  q) [ z  - - - - ~ ]  " (B.16) 

Using Eq. (B.5) we have 

Oo 

C(z )  = Z ~ ( / ,  z ) #  [, (B.17) 
/=0 

where C(z)  = ~--~-o rnz -n  is the Z-transform of the autocorrelation rn. Therefore, 

A B 
- -  - -  ( B . 1 8 )  C(z )  -- 1 - ~ #  + 1 - t l k t  2 "  

The power spectral density/5 (ei~O) is given by Eq. (88). Therefore, using the definition of Pn in Eq. (87), we get 

/5(ei°~) = C(e k°) + C(e iC°) + P0 - 2ro. (B.19) 

In the limit (g - or) ~ 0, and using e i~° - 1 ~ io), we get 

1 8 
P(e  i'°) = ~--g~f~ (B.20) 

for (V - O~) 2 <~( 09 << min(K 2, 1), which is our scaling result. 

B.2. Fractal dimension 

We calculate the fractal dimension of the set A/" of times when the process takes on values above a given threshold. 
A~ = {n [ xn = 1 } = {n I Un = 0}. Consider the random walk in Eq. (B.2) with an absorbing boundary at z = 0. 
Then we have 

un + 1 with probability or, 
un+l = Un - 1 with probability y (B.21) 

i f un  > l , and  

Un+l = 0 (B.22) 
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if Un = 0. If  p( l ,  n)  is the probability that Un = l, we have 

p ( l , n + l ) = o t p ( l - l , n ) + y p ( l + l , n )  f o r l > 2 ,  

p(1,  n + 1) = yp(2 ,  n), 

p(0,  n + 1) = p(0,  n) + yp(1 ,  n). 

We impose the initial condition 

p( l ,  0) = Pss(l). 

Let if(l, z) denote the Z- t ransform of p( / ,  n) with respect to the variable n. Then, 

OO 

~(t,  z) = Y~. p(t, n ) z  - n  . 

n=0 

Eq. (B.23) yields 

z[ff(t, z) - Pss(t)] = ot-ff(l - 1, z)  -4- y-ff(t + 1, z) fo r t  > 2, 

z[ff(1, z) - Pss(1)] = yff(2,  z), 

z[ff(0, z) - Pss(0)] = 3(0,  z) q- yff(1,  z). 

Let  W ( z )  = if(0, z). We can solve for W ( z )  to obtain 

W (z) 1 - x/1 - 4 a y  z -2  
= 

Expanding about (y - or) = 0, we have 

W ( z )  1 

( y  - or) 1 - -  Z - 1  
- - z _  1 1 + O ( ( y  - a ) ) .  

(B.23) 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

The probability of  being absorbed in n steps, w(n),  is the inverse Z- t ransform of W ( z ) .  Therefore, we have 

w ( n )  = (y - or) (~¢/-ff + O(1)) + O( (y  - ot)2n). (B.29) 

For n >> 1 and (y - a)2n  << 1, we have 

p ( e )  = w ( n )  = ~ / (y  - ot)2n. (B.30) 

Using Eq. (53) and the fact that E = (y - a)2n,  we have the scaling result 

N(E) = E -1 /2  for (y  -- or) 2 (<  ~ ( (  1. (B.31) 
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