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The spectrum of fractal dimensions of passively convected scalar gradients 
in chaotic fluid flows 

Frank V&osi, Thomas M. Antonsen, Jr.,*) and Edward Otta) 
Laboratory for Plasma Ihear& University of Maryland, College Park, Mdryland 20742 

(Received 28 August 1990; accepted 20 December 1990) 

The passive convection of scalar fields by an incompressible fluid tlow in two dimensions is 
investigated numerically. The prescribed flow is chaotic meaning that nearby fluid elements 
diverge exponentially with time. The gradient of the convected scalar field is of primary 
interest, and a measure is defined, reflecting the spatial distribution of the regions having large 
gradient. The dimension spectrum for this measure is computed by the standard box counting 
technique, and it is found to be fractal. A recent theory proposes that the fractal structure of 
the scalar gradient can be related to the nonuniform stretching properties of the flow. Using 
this theory, the fractal dimension spectrum is computed from the distribution of finite time 
Lyapunov exponents of the flow, and it is found to be in reasonable agreement with the 
dimension spectrum computed directly by means of box counting. 

I. INTRODUCTION 

Suppose a fluid is injected with a small amount of dye or 
some other kind of contaminant, and this contaminant is 
convected by the fluid without otherwise influencing the mo- 
tion of the fluid, thus acting as a passive tracer of the fluid 
flow. Let 4 (x,t) be the concentration of the contaminant in 
the fluid at any position x and time t. Then the scalar field 4 
satisfies the equation 

s = s + v-vq$ = &gV”qs, 
where v( x,t) is the fluid velocity field, which we assume to be 
incompressible, V-v = 0, and 5 is a diffusion coefficient. 
Thus, the rate of change of the contaminant concentration in 
a fluid element, while following the flow, is just equal to the 
diffusion of the contaminant into or out of the fluid element. 

In the following, we concentrate on the evolution of the 
contaminant [ Eq. ( 1) 1, and we regard the velocity field 
v( x,t) as prescribed, spatially smooth, and possessing spatial 
structure on large scales only. [In practice v(x,t) would be 
determined by such effects as stirring, thermal convection, 
etc. ] Although v( x, t) varies on large scales only, we shall see 
that the passive scalar field will have variation on very small 
scales. Initially the diffusion term in Eq. ( 1) is negligible for 
small enough {. As time proceeds, smaller scale variations of 
4 will develop, until, at some time td, diffusion has the effect 
of smoothing over the gradients in 4. We are interested in the 
relatively short time convection ( t < t, ) of the passive scalar, 
and for such cases diffusion can be neglected. The effect of 
diffusion on the problem we shall consider is discussed in 
more detail by Ott and Antonsen.‘.’ 

Henceforth we set { = 0, in which case Eq. ( 1) reduces 
to 

d4 0 
z= 

(2) 

so that the concentration 4 of the passive contaminant in any 
infinitesimal fluid element is constant as the fluid element is 

a> Also at Departments of Physics and Electrical Engineering. 

c 

convected by the flow. Let x(t) be the position of a fluid 
element as a function of time. Then the trajectory x(t) is a 
solution of 

& = v(x,t). 
L-0 

Taking an infinitesimal linear variation Sx along a trajectory 
x(t), one finds Sx (t) to satisfy to first order 

dSx - = ax-vv. 
dt 

(4) 

In a chaotic flow, typical trajectories have variational solu- 
tions Sx( t) which are, on average, exponentially increasing 
in magnitude, so that nearby fluid element trajectories tend 
to diverge exponentially as time proceeds. Recently, the evo- 
lution of contaminants when the fluid element trajectories 
are chaotic has been the subject of much interest.IM3 

Let x,, be the initial point of any trajectory and let Sx( 0) 
be an initial variation vector. The exponential divergence of 
nearby trajectories is quantified by a finite time Lyapunov 
exponent 

h(px,) ~tln-!CXf) , t ISx(O)l 
(5) 

being positive as the system evolves, for most choices of 
ax(O). The exact direction chosen for 6x(O) is not critical 
since most initial variation vectors will evolve in the direc- 
tion of maximal exponential divergence. The quantity 
h (t;x, ) indicates the average rate of exponential stretching 
experienced by a fluid element after having been deformed 
by the flow for a length of time t. For finite time t this average 
stretching is typically nonuniform; that is, it depends on the 
initial position x0. Chaos in a fluid tlow is defined more pre- 
cisely as the existence of a set of initial conditions x0 of non- 
zero volume for which the trajectories x(t) have a’symptoti- 
tally positive Lyapunov exponents 

limh(t;x,) >O. 
t-m 

’ Suppose that there is an ergodic region A for the flow. 

1017 Phys. Fluids A 3 (5), May 1991 0899-8213/91/051017-l 2$02.00 @ 1991 American Institute of Physics 1017 

 15 July 2023 16:57:02



That is, almost any initial condition in A yields a trajectory 
which eventually comes arbitrarily close to any point in A. In 
this case, the limit as t+ CO of the Lyapunov exponent 
h (t;x, ), is the same value, which we denote as z, for almost 
any x0 in A. By “almost any” x, we mean that, if we choose 
x, randomly in the region A, then the probability that 
lim,, m h(t;x, ) = h is one. There is, however, a zero proba- 
bility (i.e., zero volume) set of x,, for which the t+ 03 limit is 
not x. Forjkite time2 however, we can introduce a distribu- 
tion 24 P( h,t), of the finite time Lyapunov exponents, for x0 
randomly chosen with uniform distribution in the region A. 
As t increases,- P(h,t) becomes more and more _sharply 
peaked at h = h, approaching a delta function at h in the 
t- CO limit. This distribution will play an important role in 
our future considerations. 

From Eq. (2)) the passive scalar field has constant val- 
ues +1 and d2 on two adjacent fluid element trajectories. 
Thus $5 = $r - & is also a constant following the flow. 
Considering the separation 6x between the two trajectories 
to be infinitesimal, we have 84 = 8x-V+, and therefore 

s (Sx-Vq5) = 0 

along any trajectory. In a chaotic flow there are solutions 
Sx (t) which grow exponentially, corresponding to stretch- 
ing the fluid elements in some direction, but since the flow is 
incompressible the fluid elements must be shrinking in some 
other direction. Hence there exist solutions Sx( t) of Eq. (4) 
which decrease exponentially with time causing the magni- 
tude of the scalar gradient, 1 V4 I, to increase exponentially in 
order to maintain Sx*V# constant. 

Consider the simple situation of two-dimensional in- 
compressible flow and let Sx, (t) and Sx, (t) be solutions of 
Eq. (4), chosen so that /6x, (t) I increases with time and 
16x, (t) 1 decreases with time. (The more complicated case of 
three-dimensional field convection is described in Ref. 2.) 
Using 2, the unit vector perpendicular to the plane, we can 
express the scalar gradient in terms of the reciprocal basis 

V$(x,t> = al (6x1 X2) + Q2 (2X6x2 1. (7) 
We now show that the coefficients a, and a2 are time inde- 
pendent. Consider an arbitrary displacement 
Sx( t) = /3,6x, (t) + fi28x2 (t) and compute 

S$ = Sx(t)*Vqxx,t) = svc/3,a, +&a, 1, 
where 

6V= Sx,*(lX6x,) = Sx,*(Sx, X2) 

is the area of the parallelogram formed by Sx, and Sx, , and 
since the flow is incompressible, Skis constant. Since S# is 
constant due to Eq. (6)) and the coefficients Bk are arbitrary 
constants, we conclude that the coefficients ak must be con- 
stant. If Sx, (t) grows exponentially and b‘x? (t) decreases 
exponentially, we have 

/V4(x,t) I - ISx, (t) I -ethr’!xO) (8) 

from Eq. (7). Thus V@ grows exponentially in a direction 
orthogonal to Sx, (t) . Further, for large t, due to the depen- 
dence of the finite time exponent h (t;x, ) on initial condition, 
there will be large variations in the gradient from point to 

point in the fluid. Small regions with particularly large val- 
ues of h will appear as “hot spots.” 

Based on the preceding discussion, in a typical chaotic 
flow with a nonuniform distribution of stretching rates, it 
has been shown1*2 that.V+ will tend to concentrate on a frac- 
tal set, after long enough time, and that the spectrum of 
spatial scaling exponents (defined subsequently) of the frac- 
tal properties of V# is directly related to the distribution of 
exponential stretching rates (finite time Lyapunov expo- 
nents) . With this in mind, define a time evolving measure,uu, 
of any subset S of the ergodic region A occupied by the fluid: 

&b wy) = 
J-slv$4YdV 
J-.4 IW~f 

(9) 

Ott and Antonsen’ have formulated equations which allow 
computation of the dimension spectrum of,u+ in terms of the - 
distribution of Lyapunov exponents. The goal of this paper is 
to numerically verify the theory* for a two-dimensional 
flow. We note that the fractal dimensions of such a measure 
(with y = 2) has been measured experimentally,5 both for a 
turbulent flow and for a smooth, presumably chaotic flow 
(as considered in our paper). 

In Sec. II a particular two-dimensional chaotic flow is 
introduced, and the passive convection of an initial scalar 
field and its gradient is computed. Images of the scalar gradi- 
ent measure (9) are shown as a function of time and these 
images clearly illustrate that the gradient measure asymp- 
totes to a multifractal. In Sec. III we compute the dimension 
spectrum of the measure directly from the images using box 
counting, and compare it with the spectrum of dimensions 
obtained from the distribution of Lyapunov exponents. Sec- 
tion IV is a review of the theory relating the dimension spec- 
trum of a scalar gradient measure to the Lyapunov exponent 
distribution for the fluid flow. Section V then explains how 
this theory is applied, using the numerically determined dis- 
tribution of stretching rates in the two-dimensional chaotic 
flow to calculate the dimension spectrum. The comparison 
with the box counting dimension spectra is then examined in 
more detail. Section VI gives a summary with conclusions, 
and, in the Appendix we discuss the equivalence of the prob- 
lem we treat to that of the evolution of an initially smooth 
line or surface convected with the flow. 

II. IMAGES OF THE SCALAR FIELD AND GRADIENT ’ 

In our numerical studies we choose to solve Eqs. (3) 
and (4 j for a particular choice of flow v ( XJ) which leads to a 
discrete time mapping for the trajectory equations. In gen- 
eral, a mapping can be derived from a continuous time flow 
by the following arguments. Given a flow velocity field 
v (x, t) one can integrate Eq. ( 3 ) over a time interval T from 
nTto(n+l)T,wheren=O12 7 7 ,***7 and obtain a mapping 

X,+-l = M(x,,n) (10) 
giving discrete positions x, along a fluid trajectory, which is 
then also called an orbit of the map. The mapping will de- 
pend explicitly on the time step n if the flow is not periodic 
with period T, and, in particular, if there is nonperiodic time 
dependence in the velocity field. The theory of Refs. 1 and 2 
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applies to both the cases of periodic and nonperiodic time 
dependence of the Eulerian velocity v( x,t). The particular 
numerical example reported in detail in this paper will in- 
volve a map M that depends explicitly on y1 and is meant to 
model a flow with complicated time dependence. We also 
briefly discuss at the end of Sec. II and the end of Sec. IV, 
numerical results for the time periodic case where M is inde- 
pendent of n. 

The discrete time evolution of an infinitesimal variation 
following an orbit is then given as a linear mapping 

§x(n + 1) = J(x,,n)*Gx(n) (11) 
[corresponding to Eq. (4) 1, where J = VM is the Jacobian 
matrix of partial derivatives with respect to x, of the map- 
ping M[. We shall use Eq. ( 11) along with Eq. (7) to com- 
pute the discrete time evolution of V# for an initial nonuni- 
form scalar field #0 (x) specified at t = 0. 

Specifically, we consider the following spatially smooth 
velocity field v( x,t) in our two-dimensional computations, 
with x = (x,y): 

v(x,t) = u,yf + u2 sin[$(t) + xlS,(QP, (12) 

where S,(t) = TX,“= 06(t - nT) is a periodic impulse 
function, and rZ and 4 are unit vectors in the x and y direc- 
tions. The time dependence of e( t) is not periodic, and so the 
map M will depend on y1 [e.g., if B(nT) is a constant, the 
velocity field would then give an exactly periodic flow]. The 
first term in ( 12) represents a uniform shear in the x veloc- 
ity, while the second term is a time- and space-dependent 
shear in they velocity of the fluid flow, applied impulsively 
every time step. A prime motivation for the choice ( 12) is, of 
course, that it allows an analytical derivation of a map. The 
delta function time dependence, while not present in phys- 
ical flows, is expected to lead to a map which will exhibit 
behavior of maps that are obtained from typical physical 
flows. 

Integration of Eq. (12) through one forcing period 
T = 27r gives the following mapping of points x, = (x, ,Y,~ ) 
along a trajectory: 

A+1 =x,* -t-Y,,, 
(13) 

Y ,I + 1 =y,l =tKsin(x,+, +B,), 

with K = ~1, v2 T, and where 0, are the discrete values of 
8( t = nT). Note that the map ( 13) is spatially periodic, 
with period 27-r in both x and y. Thus, if the initial distribu- 
tion of the passive scalar #(x,0) is also periodic with period- 
icity length 2a in x and y, then it remains so for all subse- 
quent time. In such a case, points (x,y) and 
(x +_ 2kr,y f 2mr) are equivalent, and thus we can take 
(x,, ,y,, ) modulo 2~ in our computations. With 8, =O, Eq. 
( 13) is the familiar standard map (or kicked rotor map), 
which is known to have a mixture of chaotic orbits and invar- 
iant KAM curves surrounding stable periodic orbits. 

In this paper we shall take the point of view that 0(t) is 
complicated function of time (possibly having chaotic Eu- 
lerian time dependence). Our results obtained with this 
choice of 8(t) are expected to be a good qualitative indica- 
tion of behavior in general flows with complex time depen- 
dence ofthe velocityjeld v( x,t) . Thus we shall assume 8, to 

be random and uncorrelated at each time step n. With this 
prescription for 0,, , there can be no KAM surfaces or period- 
ic orbits, and orbits are ergodic in the entire square 
Og (x,y) <2~. Furthermore, for any K > 0 orbits with nearby 
initial conditions typically diverge exponentially. For defi- 
niteness, we take the distribution of 8, to be uniform in 
(0,2rr). We emphasize that, although the map ( 13) and our 
prescription for 8, follow from a specific realization of 
v(x,t), we expect that the behavior found is typical of a 
broad class of flows. 

The Jacobian of the randomized standard map 
M(x,,Q,) in Eq. (13) is 

Jh,,~, 1 

[ 

1 1 
= Kcos(x,+ 1 1 +e,) I +KCOS(X,+, +e,) * 

(14) 
Note the explicit dependence of M and J on the random 
sequence 8,) so that both the flow trajectories and the defor- 
mation of fluid elements have random components. Using 
the value K = 0.5 in the randomized standard map, and nu- 
merically computing the Lyapunov exponent (5) via Eq. 
( 1 1 ), we find that lim,- m h ( t;x, ) = & ~0.143 for all initial 
conditions x,, tested. 

In order to obtain images of the convected scalar field 
and its gradient, we shall compute these quantities on an 
equally spaced grid. To do this we start at a grid point and 
iterate backwards in time to fmd the initial points, which, 
upon forward iteration would arrive at the original grid 
point (supposing an ideal computer). This forward iteration 
is not performed: all that is needed is to save the trajectories 
already computed from the inverse map, and apply the Jaco- 
bian mapping, Eq. ( 11) , in forward time to obtain the varia- 
tions 6x(n), which then give V4 using Eq. (7). 

The computational scheme is as follows. A sequence of 
uniformly distributed random numbers 0 < Y, < 2n- is cho- 
sen for the computation of the 0, values. Suppose the value 
of the convected field at grid point xg and time t = NT is 
required. The trajectory which ends at xg is obtained by ap- 
plying the inverse of the mapping ( 13) to the point xN = xp 
for II = N,N - 1,N - 2 ,,.., 1 iterations, 

q-1 =M-‘(X,,8,), (15) 

with 8, = YN-,,, to arrive at the initial point, x0, of the 
trajectory. Since 4 is constant along trajectories [ Eq. (2) ] 
we have simply 

@,,nT) = $0 (xc, 1, 
where c&, is the initial scalar field, and for n = N this yields 
the desired value at the grid point. Substituting N + 1 for N 
in the preceding scheme shows that computation of an image 
at time t = (N + 1) T is accomplished by adding one more 
inverse iteration to the already computed trajectories. Fur- 
thermore, choosing 0, = Y,, , _ ,~ causes trajectories mak- 
ing up the image of the convected field at time (N + 1) T to 
share the same&al history for the random sequence 0, as 
trajectories in the image at time NT, or at any other time. 
Thus, the final time steps of the flow always follow the same 
pattern given by the elements of the random sequence 
Yi ,..., \I/, ,Y, ,Y, ,YO, no matter how many time steps are 
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computed. We shall discuss the reason for this choice subse- using the Jacobian of the map, where en = ‘PN- n. We then 
quently. have IV#(x,,nT) 1 = ISx, (n)l, andV4isorthogonal toax,. 

In the’ following computations the initial scalar field 
used is &, (x) = sin x where x = (x,y), giving 
V& (x) = (cos x,0). Then using the reciprocal basis repre- 
sentation of Eq. (7) and choosing 

6x, (0) = (0, cosx), sx, (0) = (1,O) 

for the initial linear displacements, gives ai = ‘1 and a, = 0 
in Eq. (7). The evolution of the variation Sx, (n), 
n = 0,1,2 ,..., N is then computed as 

In Fig. 1 are shown computed images of the scalar field 
(on the left side) and the magnitude of the gradient (on the 
right side), at increasing iterations n of the randomized stan- 
dard map with K = 0.5. The scalar field and its gradient are 
computed on a uniform grid of 768 X 768 points, and images 
of the scalar field 4 and IV+ 1 are obtained by averaging over 
2 ~2 groups of points, thereby yielding images of 384 X 384 
pixels. 

6x, (n + 1) = J(x,,e, I*& (n) (16) 

A linear intensity scale is used for the images~ of the 
scalar field 4: pixels with - 1~ 4 < 0 are in shades of dark 
blue to violet, while pixels with 0 < & 1 are in shades of red 
to yellow. As time progresses, the images of 4 get more com- 

FIG. 1. Images of the passively convected scalar field (left side) and the magnitude of its gradient (right side), where the two-dimensional chaotic flow is 
given by the randomized standard map, Q. (13) with K = 0.5. The iterations shown are n =- 1, 3, 5,7, 10,20. The coloring is explained in the text. 
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plicated, but maintain the same range of magnitudes. For 
any value C, the area of the region where I$ > C remains con- 
stant for all time. Thus, 141 does not concentrate on a fractal. 

On the other hand, since ]V$l grows at widely varying 
exponential rates, a linear intensity scale is not appropriate 
for the display of the I V4 I images because only a few points 
would be visible. Therefore the images of ]V# 1, displayed in 
the right halves of the panels in Fig. 1, are scaled in the 
following manner. The image intensity at a particular pixel P 
is obtained by computing 

4’(P) = & IV~~x)l (A iom) I XP Y 

where m, denotes those pixels for which 
IV~(x)I<IV~(P)I,and{Y~d enotes ail pixels. The relation 
between N(P) and the measure pu, (P) defined in Eq. (9) 
with y = 1, is as follows: the intensity -(t(P) is equal to the 
measure of the pixels which individually all have IV#] less 
than ]V$( P) 1. [Thus, for example, the region where 
N(P) > 0.5 is the smallest region containing 50% of the to- 
tal ,u# measure.] The coloring of the images is then deter- 
mined by N(P) : pixels with 0.1 <Y”(P) < 0.5 are in shades 
of blue to violet, whereas shades of red to yellow represent 
pixels with 0.5&F(P) ~1. 

By following the red and yellow colored pixels in the 
images of IV+] as time advances, it is clearly seen that 50% of 
the total measure becomes concentrated in a very small area. 
The set of all nonblack pixels (blue, violet, red, and yellow) 
contain 90% of the total measure, illustrating that most of 
the gradient measure tends to concentrate in an area which 
decreases with time. In addition, successive iterations of the 
mapping create more layers of structure in the images, at 
finer and finer scales. For example, comparison in Fig. 1 of 
n = 3 and n = 5 iterations reveals that each bright banded 
striation at early times is replaced at later time by several 
thinner striations. Further, the later time thinner striations 
occupy the same region as the earlier thicker striations, As 
time progresses, this process repeats. This behavior charac- 
terizes the development of a Cantor set of striations. Togeth- 
er, these characteristics indicate the development of a multi- 
fractal measure of the gradient as the scalar field is convected 
by the Aow. 

The almost stationary appearance of the large scale fea- 
tures in the images of 4 and IV+] shown in Fig. 1 is a conse- 
quence of choosing 8, = YN- n in Eqs. ( 15) and ( 16). For- 
mation of the fractal structure results from iterations of the 
chaotic map, but the large scale organization is due to the 
final few iterations of the mapping, and is influenced by the 
random sequence 19,~. In our computations, the final itera- 
tions use the same values of 19, no matter how many total 
iterations are performed. As the total number of iterations is 
increased from the first image to the next ones, new random 
numbers 8,, are added only at the beginning of trajectories. If 
instead, new random numbers were added at the end of tra- 
jectories, the multifractal structure of the measure would 
still develop, but the images from one time step to the next 
would have a completely different large scale appearance. 
Presumably (as implied by the analysis of Refs. 1 and 2), 
quantities such as the dimension spectrum (discussed in the 

next section) which characterize the fractal properties of the 
measure (9)) are unaffected by such temporal fluctuations in 
the large scale pattern (this is corroborated by numerical 
simulations). Thus these quantities are of fundamental in- 
terest. 

When there is no random component of the mapping 
(i.e., 13, SO), the large scale features of IV+] become station- 
ary as n increases. Examining images (not shown) of the 
magnitude of the gradient computed when 8, ~0 and K = 1 
in the standard map, we observe that the fractal structure of 
I V4 ] is interspersed with areas of nonfractal structure result- 
ing from invariant KAM curves. 

III. DIMENSION SPECTRUM FROM BOX COUNTING 

The concept of a multifractal measure is quantified by 
the following definition of the spectrum of fractal dimen- 
sions of a measure. Divide the space occupied by the fluid 
into a grid of square boxes of size E, and letpu, be the measure 
in box i. Then, using boxes of decreasing size e-0, we have 
the definition of the spectrum of RCnyi” dimensions for a 
measure: 

1 
D, =- 

lim log ‘iP7 

q- 1 P-OF’ (18) 

where - CO <q < + CO is an index. This definition was in- 
troduced in the context of natural measures occurring in 
dynamical systems, by Grassberger,’ and Hentschel and 
Procaccia.* The case of q = 0 reduces to the box counting 
dimension 

Do = lim log N(E) 
c-0 log (l/E) ’ 

where N(E) is the number of boxes having positive measure. 
The special case of q = 1 requires taking the limit q-+ 1 in Eq. 
(IS), and gives 

D 
I 

= lim BiPi log PI 

s-0 log E ’ 
which is called the information dimension.’ It can be shown 
from Eq. ( 18) that D, is a nonincreasing function of q. The 
word multifractal is used to describe situations in which D, 
varies (decreases) with increasing q. 

In applying the definition ( 18)) we examine the measure 
1~~ of Eq. (9) at finite times n, and, on a sufficiently small 
scale it is found to be smooth (nonfractal). However, as time 
increases the scale,size at which the measure is smooth, be- 
comes smaller. Hence for our problem define 

(19) 
T---l e-0 n-co log 6 

Estimates of the spectrum of dimensions, D(q,n), are then 
obtained (cf. below) by observing the scaling of the measure 
over a finite range of box sizes e, at increasing time. For large 
enough n we expect D(q,n) zDq, and, in Sec. V we deter- 
mine, for a given range of E, the values of n at which agree- 
ment is expected. 

When analyzing an image, the box of minimum size is a 
pixel, and the box sizes are naturally increased by factors of 
2, so it is convenient to define the box sizes as ek = 2 - k, for 
O<k<k,, where ep = 2- kp ’ is the size of a pixel. The coarse 
grained measure ,u) (Ed ,n ) in box j of size ~~ = 2 - k after n 
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iterations is simply computed as the sum of the measures in 
four boxes of the next smaller size, ~~ + 1 = 2 - k- ‘, which 
are in the box j. Applying this relation recursively defines the 
coarse grained measures for all box sizes in terms of the com- 
puted measure of the pixels in the image. Now, for all box 
sizes, and selected values of q and n, compute the following 
quantity 

Iq(Ek,yl) =.J- 

q--l 
1% CPj(ek,n)9 

j 
(20) 

and for the case q = 1 

I, (Ek,n) = CPj lo& Pj* 

We take 1, to be if the form [cf. Eq. ( 18) ] 

I,(Ek,n) z:D(q,n) log, Ek + C(q,n), (21) 

for Ed 4 1 and large enough n. To estimate the value of 
D(q,n), the standard procedure is to use the slope of a linear 
least-squares fit to 1, vs log, ek, over some restricted range 
of box sizes E,,, < ek < E,,, . 

Following the scheme described by Eqs. ( 15 ) and ( 16)) 
the gradient of the scalar field is computed on a grid of 
2048 X 2048 points, for n = 40 iterations, and Eq. (9) with 
y = 1, directly gives a 2048 X 2048 pixel image of the gradi- 
ent measure ,u4. Box counting analysis is performed on this 
image by coarse graining the measure and applying Eq. 
(20), as described above. Figure 2 shows the resulting 
f, (e,n) vs log, E for values of O<q< 1 and n = 40, and for 
q > 0, the graphs exhibit approximately linear behavior over 
only a limited range of box sizes: - 6<log, E( - 3. For this 
box size range, D(q,n) is estimated by linear least-squares 
fits to 1, (c,n), using the form (2 1) . Figure 3 shows the esti- 
mated D(q,n), as diamond symbols, with error bars giving 

FIG. 2. Results from box counting analysis of a computed image of the 
gradient measure, pr of Rq. (9) with y = 1, after n = 40 time steps of the 
flow (iterations of the map with K = 0.5.). The gradient of the scalar held 
was computed on a grid of 2048 by 2048 points ( z-4 000 000 points). The 
graph shows 1, (an) [cf. Eq. (20) ] versus log, E (E = box size), for 11 
equally spaced values of q between 0 and 1. The lowest curve in the figure is 
for 4 = 0 and the highest is for 4 = 1. 
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FIG. 3. The diamond symbols with error bars show the box counting di- 
mension spectrum D(q,n = 40) estimated by linear least-squares fits to 
I,, (e,,n) of Fig. 2 over the box size range 2 - “s~e<2 - ‘. The error bars indi- 
cate the standard deviation of the errors between the data and each fit. The 
solid curve is the dimension spectrum obtained from the distribution of. 
Lyapunov exponents, as explained in Sec. V. 

the root mean square of deviations between the linear fits 
and the f, data. We find that the error bars indicate the 
approximate deviations from linearity in the I, vs log, E 
graphs, over the range fitted. In our computations of the 
convected scalar gradient, all boxes always have some posi- 
tive measure so it is always the case that Do = 2, and thus the 
error bars tend to zero as q -+ 0. 

The solid curve in Fig. 3 is the dimension spectrum pre- 
dicted from the distribution of Lyapunov exponents at 
n = 100. We note that this dimension spectrum is relatively 
constant for n > 50 because it is based on a time invariant 
characteristic of the Lyapunov exponent distribution, as ex- 
plained in Sec. VI and demonstrated in Sec. V. The box 
counting dimension spectrum for n = 40 agrees reasonably 
well with this theory, when estimated using a small range of 
box sizes, - 6<1og, E< - 3, as shown in Fig. 3. If the 
1, (w-z) data in Fig. 2 for log, E < - 6 are included in the 
least-squares ‘fitting, the resulting estimates of D(q,n) for 
q > 0.6 are found (not shown here) to drop below the dimen- 
sion spectrum predicted from the Lyapunov exponent distri- 
bution and they have much larger error bars. The basic limit 
on the observable scaling range of the measure is determined 
by the number of points per box at which the scalar field 
gradient is computed. For log, E- - 6 this is 
(2O48j2X(2-6)2 = 1024, but for log2 E= -7 there are 
only 256 points per box, which is found to be too few for 
accurate estimation of the gradient measure in two-dimen- 
sional boxes, when n = 40. 

The range of box sizes useful for estimating D(q,n), for 
large n, is quite limited when analyzing an image, because, 
for a fixed number of points, the uncertainty in estimating 
the gradient measure of two-dimensional boxes grows qua- 
dratically as the box size is decreased. In addition, the stor- 
age and computation time required increases quadratically 
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with decreasing box size, since the scalar gradient must be 
computed at some minimum number of points per box. 
Therefore, to reduce uncertainties of the box counting analy- 
sis, we also compute ,LQ on a randomly chosen vertical line 
through the image. Since the boxes are then intervals, com- 
puting the scalar gradient at the same number of points 
(2048’) enables the use of much smaller box sizes, while still 
having many points per box. We calculate 1, as before and 
obtain an estimate &g,n) for the fractal dimension of the 
intersection of the measure with the line. The striated struc- 
ture seen in Fig. 1 implies that the measure is smoothiy vary- 
ing in one direction (i.e., along the striations), and thus 
D(q,n) = 1 + 5(q,n). The preceding assumes that the ran- 
domly chosen line is nowhere tangent to the striations. We 
assume that if tangencies of the fractal striations with the 
line do occur, they are infrequent enough not to affect the 
value of D, for q in the range of interest (O<q< 1). Indeed, 
the following results seem to bear this out. 

The resulting 1, and D( g,n) for a vertical cut through 
the fluid flow are shown in Figs. 4(a) and 4(b), respectively. 
The range of box sizes for which iq scales logarithmically has 
greatly increased, and using box sizes in the range, 
2- r3$e(2 -’ results in the estimates of D(q,n) shown in 
Fig. 4(b) (diamonds with error bars). The box counting 
dimension now agrees better with the prediction based on 
Lyapunov exponents (the solid curve), and the estimated 
dimension spectrum is more robust and convincing, since it 
is based on a larger scaling range than what was obtainable 
from analyzing an image. Using a slightly smaller range of 
box sizes does not significantly affect the estimates of 
D(q,n). We conclude that the error bars are due to statistical 
fluctuations of I4 over the scaling range. Performing the box 
counting analysis for a few other randomly chosen lines in- 
tersecting the gradient measure results in I9 vs log, E graphs 
having different fluctuations, but the resulting estimates of 
D(q,n) are within the error bars of Fig. 4(b). 

Figures 2-4 were at fixed values of time ~1. To estimate 
the limiting dimension spectrum, we show in Fig. 5 the box 
counting dimension’spectrum, D( q,n) , as a function of itera- 
tions n, for the particular values of q = 0.5 and q = 1. The 
diamond symbols with error bars are D( q,n) estimated using 
the box size range 2 - ‘3ge<2 - 3. The solid horizontal lines 
are the dimensions for 9 = 0.5 and q = 1, calculated from 
the distribution of Lyapunov exponents at n = 100. For each 
value of q, there is a range of n in which the variation of 
D(q,n) with n is almost constant and the error bars are 
smallest: 30 <n<60 for q = 1, and 50<n < 80 for q = 0.5. 
For these ranges of n, there exists numerically observed mul- 
tifractal scaling of the gradient measure, and the box count- 
ing dimension estimates are in agreement with the Lyapunov 
dimensions. 

The following is a heuristic explanation of the observed 
behavior of D(q,n) as a function of iterations n, when esti- 
mated using a fixed range of box sizes and a uniform grid of 
points. As the number of iterations increases, the muitifrac- 
tal scaling of the measure is created by the chaotic flow, and 
the values of D( q,n) decrease from 2 toward the values pre- 
dicted by the theory, as seen in Fig. 5. However, after some 
number iterations, depending on 4, the box counting dimen- 
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FIG. 4. In this case, the gradient measure was computed at 4 000 000 points 
along a vertical line intersecting the flow at x - 3.2778, where x was chosen 
at random. The box counting results at time n = 50 are shown in: (a) 
I,(e,n) vs log, E for Oi&l, (b) diamonds with error bars show 
D(q,a) = 1 + &q,n), where 6(q,n) is obtained from linear least-squares 
fits to 1, of (a), over the range 2- ‘“c&2-‘, and the solid curve is the 
Lyapunov dimension spectrum. 

sion estimates D (q,n) decrease below the predictions based 
on the Lyapunov exponent distribution. This occurs because 
for large n there is an insufficient number of pixels for obtain- 
ing good statistical estimates. This behavior of D(q;n) as a 
function of both q and n is explained in more detail in Sec. V 
using the distribution of Lyapunov exponents. 

IV. SPECTRUM OF DIMENSIONS AND THE 
DISTRIBUTION OF LYAPUNOV EXPONENTS 

In this section we review the theory relating the dimen- 
sion spectrum D, of the measure pc of a convected scalar to 
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FIG. 5. Analyzing the same vertical cut discussed in Fig. 4, this time we 
show D(q,n) = 1 + D(q,;n) (diamonds with error bars) for particular val- 
ues of q = 0.5 and q = 1, while varying 0 <n < 100. Again, b(q,n) is ob- 
tained from linear least-squares fits to I, (e,n) over the range 2 - 13<e<2 - ‘. 
The solid horizontal lines ares the corresponding dimensions obtained from 
the distribution of Lyapunov exponents. 

the distribution of stretching rates in the flow. The connec- 
tion is accomplished with a partition function approach. To 
describe natural measures which occur in dynamical sys- 
tems, Grassberger” and Halsey et al.” introduced a parti- 
tion function which combines the general properties of the 
definition of Hausdorff dimension (purely geometric) with 
the definition (18) of RCnyi dimensions of a measure. 

In order to describe passive convection by a flow, Ott 
and Antonsen”’ have combined the partition function for- 
mulation with the knowledge of how the magnitude of the 
scalar gradient grows in a chaotic flow to define a new parti- 
tion function based on the stretching properties of the flow. 
Considering the flow as a mapping using Eqs. (10) and 
( 1 1 ), define the stretching along a fluid trajectory starting at 
x0 after n iterations as 

L(n;x,) =fw, 
X 

(22) 

where 6x (0) is an initial infinitesimal variation at x, , chosen 
in a direction which causes the above quantity L to increase. 
Note that 

L(n;x,) =exti[nh(n;x,)], 

where h is the finite time Lyapunov exponent of Eq. (5)) and 
we have set the mapping time step T = 1 for convenience. 
Recall from Eqs. (7) and (8) that IV41 -L in a two-dimen- 
sional incompressible flow. Using this fact in the definition 
(9) of the time evolving gradient measure ,us ( *,n;y) and 
utilizing the partition function formulation of RCnyi dimen- 
sions, the following Lyapunov partition function can be de- 
rived’,’ 

r(n,q,D) = (L a(q))/(L Y)4, (23) 

a(q)-(q- l)(D---2) +yq, 
and where L = L(n;x, ) and the angle brackets denote an 
average over initial conditions x0 uniform in the ergodic re- 
gion. For ra -+ CO the quantity I’( n,q,D) will approach infin- 
ity if (q - 1) D is larger than a critical value rq, while it will 
approach zero if (q - 1) D is smaller than TV. For a particu- 
lar value of q, the spectrum index, the dimension D, of the 
measure as n + CO is then given by the critical value of D at 
which the quantity 

J?(q,D) = lim lI(n,q,D) 
n-m (24) 

goes from zero to infinity as (q - 1 ID increases; i.e., 
D, =Tq,/Cq- 1). 

The partition function (23) demonstrates the intimate 
connection between the distribution of finite time Lyapunov 
exponents h (or equivalently L) and the spectrum of dimen- 
sions D,. Further, it is necessary that there be a distribution 
of exponents h (n;x, ) for the measure to be multifractal: In 
the trivial case where all initial conditions x, yield the same 
h (n;h ), Rqs. (23) and (24) yield D, independent of q and 
equal to 2. 

Recall from the Introduction that we denote the distri- 
bution of finite time Lyapunov exponents by P(h,n), and 
when the number of iterations n is large, 

m Es& P(h,n)h dh, 

where h = lim,, m h (n;x, ) is the common value of the limit 
assumed by almost any choice of x0. For a particular solv- 
able model (the generalized baker’s map), the distribution 
of Lyapunov exponents has been shownzV9 to be of the form 

P(h,n) = [nG”(h)/2r]“‘exp[ -nG(h)] (25) 
for large n. In addition, (25) has been argued on general 
grounds to apply. 4P12 for dissipative two-dimensional maps 
such as the H&non map. The distribution (25) becomes 
peaked at z, with a width that decreases as n I’*, and so at z 
the function G must reach its minimum value (G’(h) = 0) 
and the normalization condition requires that G(x) = 0. In 
the case of time periodic two-dimensional incompressible 
flows there can be significant deviations from (25) because 
of the stickiness of the KAM curves bounding the relevant 
ergodic region.‘3’14 However, this does not apply for our 
study by virtue of the choice of a nonperiodic B(t) in Eq. 
(12) and the consequent absence of KAM invariant curves. 

For cases where the above form (25) of the Lyapunov 
exponent distribution applies (e.g., temporally chaotic fluid 
flows), we can use this representation to compute the p-or- 
der moment of L by the method of steepest descent 

(Lp) = SW P(h,n)ePnh dh --xp<--n[G(h,) -ph,]), 
0 

(26) 
where h, is determined by the saddle point condition 

dG 
dh h=h, =p* (27) 

Note that the range Ah,, around h,, which gives the main 
contribution to the integral (26) is with 
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Ah, - J-iGw;b-,. (281 

Using the result (26) in the partition function (23) 
gives the following condition for l?(n,q,D) to be finite and 
nonzero as n-t CO : 

G(h,) -oh, = q[G(h,.) - yh,,]. (29) 
The above condition determines the critical value of a(q) in 
the partition function, which then yields 

D, =2-- [yq-u(q)l/(q- 1). (30) 
Thus the dimension spectrum of pb in a two-dimensional 
Aow is completely determined by the function G(h) . 

We now show that the values of h, and h, will both be 
greater than x for q > 0 and y > 0. We note from (23 ) that the 
critical value of o at which l? (q,D) has its transition must be 
positive (a> 0). Thus, from (27) and the fact (numerically 
demonstrated in Sec. V) that dG /dh > 0 if and only if h > &, 
we conclude that h, and h, are greater than 6. This shows, as 
expected, that the fractal properties of the measure (D, for 
q > 0) are determined by regions with greater than average 
stretching. 

The fact that h, and h, are greater than h is of signifi- 
cance for the case of the nonrandom maps. This is because, 
for nonrandom maps with integrable KAM regions, the 
form of G(h) is modified, but only for h < h. In particular, 
Horita et a1.14 show that G(h) = 0 for h < & due to the weak 
stretching near KAM surfaces and the fact that orbits tend 
to stick near these surfaces once approached. Since the form 
of G(h) for h > i; is unchanged,14 our theory also applies to 
nonrandom maps with a mixture of KAM and chaotic re- 
gions. This is reasonable, since orbits which experience stick- 
ing to KAM regions will have lower than average h and do 
not contribute to the fractal properties of the measure con- 
sidered here. Numerical results. (not reported in this paper) 
have also been obtained for the nonrandom case and yield 
box counting dimensions D, in agreement with Eqs. (27)- 
(30). 

V. COMPARISON OF THEORY AND COMPUTATIONS 

In this section, we obtain G(h) numerically for the ran- 
domized standard map introduced in Sec. II, for the cases 
studied in Sec. III. We then explain the method used to ob- 
tain the dimension spectra shown as solid curves in Figs. 3- 
5. The comparison with box counting results is then dis- 
cussed further. 

The first step in applying the theory of Sec. IV is to 
obtain an approximate distribution of finite time Lyapunov 
exponents, P( h,n ), for the chaotic flow after long times. To 
obtain this distribution, we compute the average exponential 
growth rate of infinitesimal variations along trajectories of 
the flow, starting from a uniform grid of one million initial 
points in the square 0 < (xy) < 2~. Each initial point is as- 
signed an infinitesimal variation 

Sx(O) = (LO), 
and the evolution of the variation is then computed by 

Sx(n + 1) = J(x,,$,,)*sx(n), 

where x,, is the trajectory starting at x, given by 

-%+I = M(x,,&z 1. 
M  is the randomized standard map of Eq. ( 13 ), with Jacobi- 
an matrix J given by Eq. ( 14)) and with forcing parameter 
K= 0.5. For times n of interest, the finite time Lyapunov 
exponents 

h (n;x, ) = L- In ___ IMn> I 
n ISx(O)( 

are computed and binned to obtain a histogram of the num- 
ber of initial conditions having values of h in any of 200 bins. 
Normalizing this histogram, so that the integral is unity, 
gives an approximation to the probability density P(h,n). 
Figure 6.shows the typical behavior of P(h,n) as n increases. 
Note the sharpening of the peak of P around h = 7; as n 
increases. 

Taking the logarithm of the theoretical form (25) of 
P( h,n) yields 

G(h) = 
In n -LlnP(h,n) +=+-&-In 

n 
and for large n, the term containing G rr (h) can be neglected, 
leaving 

G(h)- - (l/n) lnP(h,n) + (lnn)/2n. (31) 
Utilizing Eq. (3 1) and the P( h,n ) curves of Fig. 6, we obtain 
the graphs of G(h) shown in Fig. 7. It appears that a limiting 
shape is being approached as n + CO, giving numerical evi- 
dence supporting Eq. (25) and the existence of G(h) as a. 
time invariant characteristic of the Lyapunov exponent dis- 
tribution. 

Utilizing the numerically determined G(h), Eqs. (27)- 
(30) of Sec. IV can be applied to obtain the spectrum of 
dimensions of the gradient measure. First we rewrite the 
equations as follows. Using the condition (27), substitute 
(+= G’(h,) and y= G’(h,) in Eq. (29), then rearrange 
and drop the subscript (T to obtain 

x .% 
E 
8 
x g 

‘Z 
x 
P  
II 

V 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

h ( finite time Lyapunov exponent ) 

FIG. 6. The distribution, P(h,n), of finite time Lyapunov exponents h, for 
iterates n = 20, 50, 100 of the randomized standard map [ECq. ( 13) 1, with 
K  = 0.5. 
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FIG. 7. The result of applying Eq. (3 1) to the curves of Fig. 6, yielding, for 
n = 20,50, 100, graphs of G(h), the function characterizing the Lyapunov 
exponent distribution [ Eq. (25) 1. 

FIG. 8. The numerically obtained G(h), for n = 100, is overplotted with a 
third-order polynomial fit: G(k) -0.07 - h + 3.88h 2 L.44h ‘. This poly- 
nomial fit is used to calculate the Lyapunov dimension spectrum, shown as 
the solid curves in Figs. 3-5. 

q(h) = [G(h) - hG’VW[G(h,) -h,G’(h,)], 
(32) 

a relation between the finite time Lyapunov exponents h and 
the dimension spectrum index g. Now, from Eq. (30), the 
dimension spectrum of ,uo is given by 

D, = 2 - [yq(h) - G’(h)l/[q(h) - 11. (33) 

Since G(h) = 0 and G’(z) = 0, where z is the asymptotic 
Lyapunov exponent, the equations give q(h) = 0 and 
Do = 2, as expected. 

To apply the preceding equations, we perform a linear 
least-squares fit of a third-order polynomial to the numerical 
G(h) data. This eliminates the statistical fluctuations due to 
having a finite sample of initial conditions, and yields an 
analytic function which can be differentiated. Further, we 
note that the third-order polynomial is an excellent tit to the 
data, as shown in Fig. 8 for n = 100. To quantify the denomi- 
nator of Eq. (32), we solve for the value h, which satisfies 
the condition (27) 

-$+z,) =y, 
where the derivative of G is obtained analytically from the 
polynomial fit. For y = 1 we obtain h,, = 0.3 12, and using 
this in Eq. (32) with the polynomial approximation of G(h) 
then gives q(h) . The maximum value of q( h) available from 
the numerical G(h) in Fig. 8 is qmax Z, 1, but it is possible to 
extrapolate slightly beyond that using the polynomial fit. 
Finally, the Lyapunov dimension spectrum of the gradient 
measure p* is obtained from Eq. (33 ), and this result is 
shown as the solid curves in Figs. 3-5. 

Examining the comparison in Fig. 4, we see that, when 4 
is less than a certain critical value, the box counting dimen- 
sion spectrum is greater than the dimension spectrum pre- 
dicted from G(h). This particular value of q we shall call the 

crossover value, because, for q greater than the crossover 
value, the opposite situation occurs. Further, as the number 
of map iterations 12 increases, this crossover value moves 
from larger to smaller values of q, as inferred from Fig. 5. In 
the remainder of this section we explain the behavior of the 
box counting dimension spectrum relative to its theoretical 
prediction from G(h), as a function of q and n. 

When estimating the box counting dimension spectrum, 
an important question is: what minimum box size em,,, 
should be used in the estimation? Using G(h), we shall give a 
qualitative prediction of emin as a function of (q,n). Another 
way of looking at the definition ( 19) of dimension is that D, 
determines the scaling exponent of the measure raised to the 
power q, as the box size E goes to zero: 

In the preceding theory of the dimension spectrum [Eq. 
(33 ) 1, the spectrum index q and Lyapunov exponents h are 
indirectly related through the function G(h) and Eq. (32). 
This leads to the interpretation that, the scaling exponent of 
the q moment of ,LL& is mainly due to those boxes having 
trajectories which yield Lyapunov exponents in the range 
Ah qCq), given by Eq. (28), around the value h,,,, deter- 
mined by Eqs. (27) and (29). The fraction of trajectories 
contributing to this range Ahccq, about hgcp) is approximate- 
lY 

P(h m(9) ‘~)4(9) --w[ - Mh,,,, 11, 
[obtained by multiplying Eqs. (25) and (28) 1. If NT is the 
total number of trajectories, then NT exp [ - nG( hgcqj ) ] & 
is approximately the number of trajectories in a box of size e 
contributing to the q moment (34) of ,LQ, where d is the 
embedding dimension of the boxes (i.e., d = 2 when analyz- 
ing an image, d = 1 for a vertical cut). For adequate statis- 
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tics, the average number of contributing trajectories in a box 
must be much greater than one. Thus a bound on the mini- 
mum box size for observable scaling of the measure after it 
time steps is approximately 

E,in > EG (q,n) f-; {exp [ nG(h,,,, ) ] /N,I”d. (35) 

Note that eG is an increasing function of q and ~1. For box 
sizes smaller than eG, the q moment ofy, will tend to scale 
with an exponent corresponding to a lower fractal dimen- 
sion, because of a lack of enough trajectories to accurately 
determine the measure in the boxes. 

Another bound on the minimum box size arises from the 
fact that for finite time the measure is smooth on sufficiently 
small scale. To estimate the relevant scale for those trajector- 
ies with finite time Lyapunov exponent in the range Ahcc9, 
about hc(9j, we note that the fluid elements following these 
trajectories have experienced a stretching of approximately 
exp(nh,,,, ), after n time steps. Since we are dealing with a 
conservative two-dimensional flow, those same fluid ele- 
ments must have experienced a contraction by approximate- 
ly exp( - nhacqj ) in some other direction. Recall from the 
Introduction that it is the contraction of fluid elements 
which causes exponential growth of the gradient of the con- 
vected scalar field, and hence the scaling of the gradient mea- 
sure with respect to box size. Therefore, the minimum box 
size for which scaling of the measure can be occurring after n 
time steps is approximately 

emin > E/, (q,n) = exp( - nbcqj 1. (36) 
Note that e/t is a decreasing function of q and n. For box sizes 
smaller than E,, , the q moment ofpa will tend to scale with an 
exponent corresponding to a higher fractal dimension, be- 
cause the measure is still smooth (i.e., two dimensional). 

The estimation of the box counting dimension spectrum 
of ,u+ is affected by both the E,, and eg bounds on the mini- 
mum box size for observable scaling. The dimension spectra 
shown in Figs. 4 and 5 are estimated by using the same range 
of box sizes, E,in <EQG,,, , for all values of the spectrum 
index q and time n. Applying the preceding discussion of the 
relevance of E,* and l G, the box counting dimension esti- 
mates will be greater than the theory [ Eq. (33) ] when the 
values of q and n cause E,* (q,n) > E&: and the box counting 
dimension estimates will be less than the theory when the 
values of ¶ and n cause eG (q,n) > emin. Figure 9 shows the 
combined quantity log, [ max{e, ,eG}] versus spectrum in- 
dex q, for n = 30, 40, 50 iterations, and d = 1 (one-dimen- 
sional boxes), corresponding to the box counting analysis 
results shown in Figs.. 4 and 5. Each wedge shaped curve of 
Fig. 9 is composed of eh on the left-hand side of the mini- 
mum, and Ed on the right side. The value of q where the box 
counting dimension estimate goes from being greater than to 
less than the predicted dimension is given approximately by 
the condition E,* (q,n) = ~~(q,n) (the minima of the 
curves), and this crossover value decreases as n increases. 

For fixed values of q and minimum box size E,in, the 
condition 

estimates the values of n for which the scaling exponent of 

q (moment of measure) 

FIG. 9. Qualitative prediction of the minimum box size for the scaling range 
of the q moment of the gradient measure, when analyzing a one-dimensional 
cut of the measure (as in Figs. 4 and 5). Log base 2 of the approximate 
minimum box size is shown as function of q, at values of time n = 30,40, 50. 
The curves are computed using the G(h) of Fig. 8, as explained in text. 

the q moment of ,Q~ may be observed with box counting. 
Choosing q = 1 .O and emin = 2 - I3 in Fig. 9 selects 30<n< 50 
iterations as the approximate time range when the q moment 
of ,uB will exhibit the theoretically predicted scaling expo- 
nent, for box sizes E > emin. This is the range of n where best 
agreement between the theory and box counting is found in 
Fig. 5, for q = 1.0. Similarly, for 4 = 0.5, Fig. 9 indicates 
that the theoretical scaling exponent will be estimated via 
box counting when n > 40, which is the case in Fig. 5. The 
loss of agreement for-n > 80 in Fig. 5, is also qualitatively 
predicted by the scaling range cutoff eG (q,n), but is not 
shown in Fig. 9. 

VI. CONCLUSION 

The results of numerical simulations of a specific two- 
dimensional chaotic flow, demonstrate that the gradient of a 
passively convected scalar field tends to concentrate on a 
multifractal set, whose characteristics are determined by the 
chaotic properties of the Aow. We believe that the flow 
which we investigate is representative of chaotic flows in 
general, and by including a random component in the shear 
velocity term it may represent some aspects of weakly turbu- 
lent flows. A measure is defined from the magnitude of the 
gradient of the scalar field, and, applying the technique of 
box counting, we have shown that the dimension spectrum 
of the gradient measure approaches a multifractal spectrum. 

In addition, we verify a recent theory’s’ relating the di- 
mension spectrum of the gradient measure to the the nonuni- 
form stretching (chaotic) properties of the flow. Passive 
convection (stretching) by the Aow is characterized by com- 
puting the distribution of finite time Lyapunov exponents h, 
and a time invariant characteristic function G(h) is then 
calculated2 from the distribution.of h. Using this character- 
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istic function G(h), we can calculate the dimension spec- 
trum of the gradient measure. The dimension spectrum, 
based on the Lyapunov exponent distribution, is found to be 
in reasonable agreement with the box counting dimension 
spectrum. 
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APPENDIX: CONVECTION OF CURVES AND SURFACES 

Our problem of the evolution of Vq5 is equivalent to look- 
ing at the evolution of an initially smooth line in two dimen- 
sions or a surface in three dimensions. The result that IV41 
eventually concentrates on a fractal is equivalent to saying 
that the convected line or surface concentrates on a fractal 
(in a sense described below). In three dimensions, the evolu- 
tion of a convected line is equivalent to the problem of the 
convection of a passive divergence-free vector field, which is 
also treated in Ref. 2 where the concentration of the vector 
on a fractal is related to the stretching properties of the flow 
(similar to the results summarized in Sed. IV for Vq5). (The 
vector problem is of interest in the study ofthe fast kinematic 
dynamo. ) 

We now show the equivalences stated above, for the case 
of passive scalar gradients. Consider the evolution of a sur- 
face in three dimensions (or a line in two dimensions). Ini- 
tially the surface is taken to be nonfractal and smooth (e.g., a 
spherical surface might be used initially). Now imagine that 
the surface is evolved for a long time, deveIoping many folds 
and layers. We define a measure,ui for a cube i, as in Sec. III, 
by saying that ,ui is the fraction of the area of the evolved 
surface which lies in the ith cube (box in two dimensions). 
Note that, for sufficiently large time, the surface will pass 
through the box many times. The dimension spectrum D, is 
then as given in Eq. ( 19). 

Now consider the evolution of Vq5, where we take the 
initial scalar distribution #(x,0) to be a constant 4, in some 
region and a different constant & in the complement of this 
region. Further we take the initial surface separating these 
regions to be smooth and nonfractal. We evolve 4 for this 
initial condition under Eq. (2) and computepi for each cube 
as defined by (9) for y = 1. Noting that IJ~ is constant follow- 
ing an orbit, by Eqs. (2) and (3), we see that the surface 
separating the region with 4 = 4, from the region with 
4 = #2, is convected with the flow. Application of the defini- 
tion of,u, given in Eq. (9)) fbr y = 1, shows that the measure 
,ui of a cube is just the fraction of the evolved surface area in 
the cube. Hence, the two problems are equivalent. 
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