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The spatial power spectra of passively convected scalar quantities in fluid flows are considered for the
case in which the flow has smooth large-sclae spatial dependence and Lagrangian chaos. Fundamentally
different results apply for the small-diffusivity limit of the "initial-value problem" (in which an initial
passive scalar density evolves in time with no passive scalar source present) and the "steady-state prob-
lem" (in which a statistically steady passive scalar source is present and one seeks time-asymptotic steady
properties). Previous work has shown that the initial-value problem yields a situation where the gradient
of the passive scalar tends to concentrate on a fractal. The purpose of this paper is to consider the impli-
cations of the prevously obtained fractal properties for the spatial power spectrum of passively convect-
ed scalars. The main result of this paper is that for the initial-value problem the spatial power spectrum
is related to the fractal dimension spectrum and to the distribution of stretching rates (finite-time

Lyapunov exponents) of the flow and is not necessarily a power law. In particular, for the initial-value
problem in the case in which the flow has no Kolmogorov-Arnold-Moser (KAM) surfaces, the po~er
spectrum is distinctly not a power law. However, if KAM surfaces are present, the power spectrum for
the initial-value problem exhibits a k power-law dependence in a range of k values. For the steady-
state problem, it is shown that a k power spectrum always applies. (This latter result has been previ-
ously derived for the steady-state problem and is known as "Batchelor's law. ")

I. INTRODUCTION F(k)= f s(k —~k ~)c(k ),
(2n. )"

(3)

d
dt

+v(x, t).a a
Bt ' Bx

where v(x, t) is the fiuid velocity. Further, tt represents
the diffusion coefiicient for the scalar and S (x, t)
represents a source of the scalar. It is assumed that the
fiuid flow v(x, t) is incompressible (V.v=O) and is deter-
mined by external dynamics (such as stirring), that the
source S(x, t) is prescribed, and that neither of these are
affected by P.

Equation (1) poses a fundamental problem in classical
physics and naturally has attracted much attention. In
particular, much effort has been devoted to the deter-
mination of the power spectrum of the correlation func-
tion,

C(r) = (P(x+r)P(x) ), (2)

where the average in Eq. (2) can be taken to be over the
domain in which Eq. (1) is solved. The power spectrum
F (k) is then defined as

The properties of scalar quantities (e.g., temperature or
the concentration of an impurity) that are passively con-
vected by an incompressible fluid flow have been of in-
terest for many years [1—6]. The evolution of such a pas-
sive scalar is determined by the equation

d
ct

=tcV P+S(x, t) .

In Eq. (1) the time derivative is taken following the
motion of the fluid,

where

C(k') = f d "r C(r)e (4)

is the Fourier transform of the correlation function and n
is the dimensionality of the domain (n =2 or n= 3 are the
cases of interest). The integration over k' combined with
the 5 function in Eq. (3) represents an averaging over an-
gles in k' space and leads to the integral relation

f dkF(k)=C(O)=&y ( )) . (5)
0

(6)

where Vo is a reference domain in which (1) is satisfied
and s is a subset of this domain. The situation was con-
sidered in which the flow was smooth on large scales,
meaning that the smallest flow scale is much larger than
the scales which develop in the variation of the passive
scalar P(x, t). Moreover, the flow was assumed to be
chaotic and ergodic in Vo. Here we use the word chaotic
with reference to the Lagrangian fluid trajectories rather
than with reference to the time dependence of the Euleri-

Recent work by ourselves and others [2,3,6] has fo-
cused on another quantity of interest, namely, the fractal
dimension of the measure of the gradient of the scalar.
In particular, in Ref. [2] we defined a measure p of a re-
gion of space s based on the distribution of

~ Vp~ r,

f, IVII'd "x
p(s, t, y)=

f, IVII&d "x
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an velocity field v(x, t). Thus by a chaotic fluid flow, in
this paper we shall mean that the distance between
infinitesimally nearby Quid elements typically diverges ex-
ponentially with time. [This definition of chaos includes
time-dependent flows v(x, t) which are temporally non-
periodic. We expect such a nonperiodic time-dependent
situation to occur, for example, in low- Reynolds-number
turbulence. ]

A distinction was found in Ref. [2] between the
"initial-value" problem, in which Eq. (1) is solved with
the source set equal to zero and an initially smooth P
evolves in time, and the "steady-state" problem, in which
the source is considered to be statistically steady and the
time-asymptotic properties of the measure are of interest.

For the initial-value problem it was found [2] that in
the case of small diffusivity the measure p exhibited frac-
tal properties over some time interval determined by the
diffusivity and the How. To understand this, first consid-
er the case where there is no diffusion ~—=0. Then, as
time increases, P(x, t) develops finer and finer scale varia-
tions, and the regions of largest ~VP~ occupy a smaller
and smaller fraction of space. This fraction approaches
zero as t —+ ~, and in this limit, in an appropriate sense,
the region of largest ~VP approaches a fractal set. At
any large finite time, the region of largest

~ VP~ will be ap-
proximately fractal in that, when viewed with finite spa-
tial resolution [larger than some appropriate characteris-
tic scale of the region of large

~ VP~ (this length scale de-
creases with time)], the region looks fractal. If irAO, but
is very small, then the preceding considerations apply up
to some finite time t at which the characteristic scale
mentioned above becomes so small that diffusion cannot
be neglected. After this time the measure was shown to
no longer be fractal. Our interest is in the intermediate
range of times where t is large enough that the measure is
approximately fractal, but small enough that diffusion
plays no role (t (r„). Such a range exists for sufficiently
small i~ (cf. Refs. [2]). In the steady-state problem the
measure was shown [2] not to exhibit fractal properties in
the time-asymptotic limit.

For the steady state problem, in the limit of vanishing
diffusion coefficient, the following results have been ob-
tained for F(k):

(7a)

has no integrable regions [i.e., no Kolmogorov-Arnold-
Moser (KAM) surfaces], the power spectrum does not
obey a power law as in Eq. (7b). Instead, it exhibits a
scaling dependence on k which is characteristic of a mul-
tifractal.

(2) It is possible to recover the spectrum of fractal di-
mensions for the measure p from the power spectrum.

(3) If the initial-value problem is considered for a case
in which the Aow has KAM regions, then an approximate
k ' power spectrum results for a certain range of k
values.

(4) For the steady-state problem our results are con-
sistent with the known result for this case, Eq. (7b)
(Batchelor's law).

II. INITIAL-VALUE PROBLEM

We consider solutions to Eq. (1) with the right-hand
side equal to zero (no source and no diffusion) and with
initial condition

g(x, t;t)=x .

In terms of g, the solution of Eq. (1) is

P(x, t)=exp[iko g(x, t;0)] .

The appropriate expression for the correlation function,
generalizing to our use of complex scalars, is

or
C(r, t) = (P(x+r, t )P'(x) )

C(r, t)=(exp[iko [g( +xr, t;0) g(x, t;0—)]]) .

P(x, t =0)=exp(iko x),.

chosen for simplicity. [Due to the linearity of the prob-
lem (1) the solution for arbitrary initial conditions can be
constructed by superposition. ] Equation (1) states that
p(x, t) is constant along a fiuid trajectory. Thus, let
g'(x, t;t') be the position of a fiuid element at time t'
which is located at the point x at time t. The vector g'

thus satisfies

dg(x, t;t')
dt'

with the initial condition

if the fluid flow is turbulent [5] and satisfies the Kolmo-
gorov scaling hypothesis and k is in the so-called inertial
range, and

F(k)=k (7b)

for either a high-Reynolds-number turbulent Bow with
k ' less than the Kolmogorov viscous cutoff length [5],
or if the How is smooth with large spatial scales, but is
chaotic [4] in the Lagrangian sense (cf. below). Equation
(7b) is known as Batchelor's law.

The purpose of the present paper is to extend our pre-
vious work [2] on the fractal dimension spectrum of the
measure (6) by exploring its relation to the power spec-
trum F(k) The main results of.the paper are as follows.

(1) We find that for cases in which the measure exhibits
fractal properties (the initial-value problem) and the flow

A. The relationship between the power spectrum
and the distribution of finite-time Lyapunov exponents

We will be concerned with the dependence of the
power spectrum, E(k), for large values of k ))ko. This
dependence is determined by the correlation function at
small values of the separation, r. This suggests that it is
appropriate to linearize the trajectory g(x+ r, t;0),

g'(x+r, t;0) =g(x, t;0)+M(x, t;0).r,
where

(10)

M(x, r;0)=ay(x, r;0)xax .

The quantity M-r is the initial separation of two fiuid tra-
jectories which at time t find themselves at x and x+r,
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respectively, when r is small.
We now substitute the linearized trajectory (10) into

the expression for the correlation function (9), perform
the Fourier transform (4), and the average (3). This re-
sults directly in the following expression for the power
spectrum F, ( k, t ) for the initial-value problem:

F (k, &)=(fi(k —
~vo ~(x, &;0)l)& .

We note that expression (11) clearly satisfies relation (5)
for the integral of F, (k) for this problem. Here we have
appended the subscript 1 to the power spectrum F to
denote the initial-value problem; later on we shall use the
symbol F2 to denote the power spectrum for the steady-
state problem.

We now discuss the validity of the linearization of the
trajectories used to obtain (11). Clearly, with this lineari-
zation the correlation function has structure which is
determined by trajectories which were initially separated
by a distance ~ko~ . So long as this distance is smaller
than the characteristic scale for variation of the Quid ve-
locity, I„ the linearization is appropriate. We assume
this to be the case and proceed. However, we expect our
results to be roughly valid when kol, = 1 as well.

We can now relate the power spectrum F, (k, t) to the
distribution of Lyapunov exponents for the Aow. In par-
ticular, the matrix M is constructed from linearized solu-
tions of Eq. (8) which, for a chaotic fiow, diverge ex-
ponentially in time. Since the How is incompressible,
some solutions converge exponentially as well. Thus, for
large values of t,

~ko.M(x, t;0) =koexpht, (12)

where h is positive and is the magnitude of the most neg-
ative Lyapunov exponent for the linearized trajectories.
The quantity

ir[[ko m(x, ~;0)
I /ko

is the maximum initial separation in the direction of ko of
two trajectories which at time t are separated by ~

r ~, and
the maximum is taken with respect to the direction of r.
Since trajectories converge and diverge with exponential
rates for large t, the direction of r producing the max-
imum initial separation will correspond to the linearized
trajectory with the most negative Lyapunov exponent.
For finite time, different trajectories will have different
values of h,

h =h(x, t) .

However, in the limit of t ~ ~, if a trajectory ergodically
visits the entire domain of interest, then, for almost every
x in the domain, the exponent approaches the same
value,

lim h(x, t)=h .

The finite-time variations in the values of h can be
characterized by a probability distribution [2,7] P(h, t),
where P(h, t)dh is the probability that h (x, t) is between
h and h +dh, if x is chosen randomly with uniform prob-
ability in the relevant ergodic Quid region. In terms of
P(h, t), one obtains from (11) and (12) the power spec-
trum

F, (k, r)=(kr) 'P r 'ln
0

(13)

Thus, the k dependence of the power spectrum of the
correlation function is directly related to the distribution
of finite-time Lyapunov exponents, and an experimental
measurement of the former would determine the latter.

P(h, t)= rG "(h)
2' exp[ tG (h )], — (14)

where G(h ) =G'(h )=0 (the prime denotes diff'erentiation
with respect to h). That is, P is peaked at h =h with de-
viations that scale as t ' . This conjectured form has
been verified numerically for cases where there are no
KAM surfaces [8—10] [in particular, for the situation in
which the time dependence of the Bow is nonperiodic
(e.g., the Eulerian velocity v(x, t) is itself temporally
chaotic)]. Also, Eq. (14) is expected to apply for time-
periodic fiows, v(x, t)=v(x, t+T), yielding maps for
which KAM surfaces are essentially absent (e.g. , the stan-
dard map at large nonlinearity parameter). [For hyper-
bolic dynamics for the stroboscopic map of a time-
periodic fiow, we also expect that Eq. (14) should be
derivable rigorously, since in that case there is a splitting
between stable and unstable directions. ] In the presence
of KAM surfaces bounding the relevant chaotic region,
as typically arises for two-dimensional time-periodic
fiows, there are important modifications of Eq. (14).
These modifications [8,9] are due to the "stickiness" of
KAM surfaces, leading orbits near KAM surfaces to
remain near them for long times. We discuss the effect of
KAM surfaces on the power spectrum for the initial-
value problem in Sec. II D. In the remainder of this sec-
tion we treat the case where KAM surfaces are absent.
We can then use Eq. (14) to determine the power spec-
trum from the function G. Defining hk =t ' ink/ko, we
have

F, (k, t)= 1

kot

G "(hk )r

2%

The dependence of F& on k in
imated as a power law in k.
(15) for large t. We have

exp[ t [h k+(Gh )k]] . —
(15)

this case cannot be approx-
To illustrate this, consider

d lnF, = —[1+G'(hi, )] . (16)

B. The distribution of Anite-time Lyayunov
exponents when KAM surfaces are absent

Equation (13) applies for both two- and three-
dimensional incompressible Rows. We now specialize to
the case of two-dimensional incompressible Bows. In this
case a Aow giving exponental divergence of nearby trajec-
tories has two Lyapunov exponents which are equal in
magnitude and opposite in sign. [Thus we can regard
h (x, r) as the positive exponent and P (h, t) is its distribu-
tion. ] One reasonable conjecture is that the distribution
P(h, t) is the same as that which results from the multi-
plication of many random (scalar) numbers. This results
in a distribution of the form [2,7]

1/2
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Since G'(hh ) is of order unity and a function of k, a sim-
ple power law does not apply. Further, to contrast the k
dependence of F, (k) with Batchelor's law, we consider
the product kF, (k, t) as a function of ln(k lko). (By (15),
kF, =exp[ tG(h h)]. ) For typical G(h) (Ref. [3]) the
quantity kF, (k, t) plotted versus ln(klko) has the shape
of a pulse, as illustrated schematically in Fig. 1. Since
G'(h )=0, the peak of the pulse propagates to larger
values of lnklko at the uniform velocity h while its
width, w in lnklko, is given by w= /—2t/G"(h). Fur-
ther, the area under the pulse is constant
( fkF, d(ink)= fF,dk) Of course, this dependence of
the power spectrum on k applies only for values of k less
than the upper cutoff [5] k,„=(h/~)'~ determined by
diffusion of the scalar. As the pulse of scalar variance ap-
proaches this upper cutoff; it is dissipated, and F, (k, t)
for k )k „quickly goes to zero.

In contrast, for the steady-state problem the power
spectrum behaves as k ' for all values of k greater than
k0 and less than the upper cutoff k

defined as [11]

( e ttht)I (D, q, t)= (17)

:-(D,q, t)= f dk k F, (R, t)
0 f dk ki'F, (k, t)

0

which, using (11) for F, (k) and performing the k integra-
tions, can be seen to be equivalent to I (D, q, t). Thus, the
fractal properties of the measure p can be determined
from various k moments of the power spectrum of the
correlation function.

where cr =(q —1)(D —2)+yq. The average (. . . ) in
(17) is over x, or, equivalently, over h weighted by P(h, t)
As t~ ~, I either diverges to infinity or tends to zero
depending on o (and hence on D). The dimension D was
found [2] to be determined by the condition that
lim, „1 goes from zero to oc as D passes through Dq.
A similar partition function can now be defined from the
power spectrum

C. Relation of fractal dimensions to I'
& (k) D. The efFect of HAM surfaces

In our previous work [2] we considered cases where
Eq. (14) applies, and we related the distribution of
Lyapunov exponents to the spectrum of fractal dimen-
sions of the measure p. We now show how this informa-
tion can also be determined from F, (k).

The spectrum of fractal dimensions Dq (where q is a
continuous parameter) characterizes the multifractal
properties of the measure p. Roughly speaking, D
specifies the scaling of «p', q ")& where p, is the mea-
sure in a small box of side e and the average « . . . &) is
over all boxes and taken with respect to the measure p it-
self. The average defining D scales with e as

(q —1)D«p, ',q "))-e ' for small e (e.g. , see Grassberger
et al. [7] and references therein).

Specializing to the case of two dimensions, it was
shown [2] that D can be determined by the time-
asymptotic behavior of the "partition function" I (D,q, t)

We again consider two-dimensional Aows and start
with Eq. (13), which gives F, (k, t) with P(h, t) being the
distribution of positive Lyapunov exponents as before.
We recall that the form of P(h, t) given by Eq. (14) is
equivalent to the distribution which results from the rnul-
tiplication of many random, independent scalar numbers.
This form was shown [8—10] to be appropriate when no
KAM surfaces are present. When KAM surfaces are
present, Eq. (14) must be modified due to the following
effect. Chaotic trajectories can become "stuck" near
KAM surfaces for long periods of time. While a trajecto-
ry is near the KAM surface, the divergence of nearby tra-
jectories from it is greatly reduced. As shown in Ref. [9],
this results in the following modification of the probabili-
ty distribution function. For values of h & h the distribu-
tion function is determined by trajectories which have
never become "stuck" near KAM surfaces (these are the
ones with the largest Lyapunov exponent). In this case
the form (14) applies (but with a different constant multi-
plying it).

For values of h sufficiently less than h the distribution
function is determined by the orbits which were stuck
near KAM surfaces. We denote the sticking time by ~.
The linearized trajectory for these orbits will typically
have exponentiated approximately at the rate h for a time
t —q. (here t is the time interval over which the finite-time
Lyapunov exponent h has been calculated). Thus, the
effective Lyapunov exponent for these orbits is
h =h(1 q. /t). Following the a—uthors of Ref. [9], we let
W'(q )dq. be the probability that an orbit has been stuck
for a time in the range ~ to ~+d~. The resulting proba-
bility distribution for h is thus

//n (k/ko) P(h, t) = W'(t(1 —h/h ))tlb (19)

FIG. 1. Schematic of kI'I vs 1n(k/ko).
for 0&h ~h.

The form of W'( )earn be described as follows. For
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finite t some fraction of the orbits will never have been
stuck. These contribute to W'(~) as a 5 function at ~=0.
These orbits will then cause P(h, t) given by Eq. (19) to
have a component which is also a 5 function peaked at
h =h. [Actually, this peaked component is not truly a 5
function but is broadened by the same statistical Auctua-
tions in h that give rise to the distributions Eqs. (14}and
(15}]. A second class of orbits, namely, those which have
been stuck near KAM surfaces, also contribute to W'(v }.
The authors of Ref. [9] note from numerical experiments
that for this class of orbits W'(w) =r ~ with 2)P) 1 for
the standard map. This power law only applies for r
much greater than the typical time scale of the Bow,
which can be estimated to be h

The contribution of the "stuck" orbits to F,(k, t) for
values of hk=t 'ln(k/ko) for which the power law
W'(~) =r ~ applies is obtained from Eqs. (13) and (19),

(20)

hk & h —(w/t) we obtain from Eq. (20)

lnF)

d ln(k/ko) t(h h—
k )

(21)

III. THE STEADY-STATE PROBLEM

Thus, as t~ao, the power spectrum approaches a k
law for k & ko exp(ht —

LLL ). For k & ko exp(ht —w ), Eq.
(16) applies, and thus the power spectrum k in this range
appears to be a pulse (as in the case without KAM sur-
faces).

Finally, we point out that our previous discussion of
the relationship between the power spectrum FL(k, t) and
the spectrum of fractal dimensions implied by Eqs. (17)
and (18) remains valid even in the presence of KAM sur-
faces since the particular form of P(h, t) is not used in
deriving the two partition functions I and:-.

This contribution is sketched schematically with dashed
lines in Fig. 1. The contribution to FL given by Eq. (20) is
dominant only for values of hk = t ' ink/ko smaller
than those contained in the broadened peak due to the
orbits which have never "stuck" —that is, for
ink /ko & ( th —w ), where w =+2t /G "h ) is the width of
the broadened peak. This corresponds to values of
~- m »h ', and thus the power law 8"-~ ~ applies.

The result of these modifications of P(h, t) on the local
slope of the power spectrum can now be computed. For

hk =t ' ln(k/ko) & h (LLL/t), —

Eq. (16) applies as in the case of no KAM surfaces. For

We now consider solutions to Eq. (1) with the source S
not equal to zero. As in Secs. II B and II C, we consider
the case where KAM surfaces are absent. However, we
still consider the diffusion coefficient to be negligible.
Taking the simplest possible source, namely, S

e=xp(i ko x). we, find for P(x, t),

P(x, t)= f dt'exp[iko g(xt;,t')], (22)
0

where we have assumed P vanishes at t =0. Forming the
correlation function, linearizing the trajectories as before,
taking the Fourier transform, and averaging over angles
in k' space results in the following expression for the
power spectrum F2 for the steady-state problem:

F2(k, t)= f dt'f dt" &5(k —
~ koM( xt;t')~) exp{iko. [g'(x, t;t') —g( tx;t")]] ) .

0 0
(23)

We will now argue that in the integrand of Eq. (23) the
scale length for variation of the 5-function term is small
compared to that for the exponential. This will have the
consequence that the average of the product of the two
terms can be replaced by the product of their averages.

We are concerned with large values of k »k0. Hence,
from the expression for M given by (12) and the 5 func-
tion in (23), we are concerned with times

Since nearby orbits separate exponentially with increas-
ing (t t ), the sca—le of variation of ko M with x is much
smaller than the scale length for variation of the equilib-
rium velocity v(x, t), l, . In particular, the scale length in
x can be estimated to be the initial separation required
for two orbits to separate to the equilibrium scale length
in the relevant time, t t =h ln(k/ko). —This gives for
the scale length in x, of the 5-function term, I
=l, ko/k « l, . The second term in the integrand of (23),

the exponential term, involves an average taken at two
different times on the same trajectory. This term will
contribute when the times t' and t" are close enough to-
gether, ~t' t"

~
=h, t—he characteristic time for varia-

tions of the Qow velocity v. Thus, the scale in x for this
term will be roughly the scale length I„. Since we are
averaging over x and the two terms vary on such widely
different scales, the two terms can be regarded as in-
dependent, yielding

F2(k, t)= f dt'f dt"C, (~t' —t"~)
0 0

where

C, (~t' t"~)=(exp{iko [g'—(x, t;t') g(x, t;t")]])—
represents the correlation function of the source along a
trajectory averaged over all trajectories. Letting t —+~
and noting that C, ( ~

t ' t"
~

) decays to ze—ro for time
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differences small compared with h ' ln(k /ko ), we have

F,(k, t ~ ~ ) =rf dt'F, (k, t'),
0

(24)

where

r= f dt C, (gati) .

Thus, the power spectrum for the steady-state problem is
the time integral of the power spectrum for the initial-
value problem.

Using the properties of F, (k, t), we can obtain the k
dependence of F2(k, t ~ oo ). Consider

f dt f dk F, (k, t)= f d—t f dk F, (k, t)=t, ,

where t, =h ' ln(k, /ko); we have replaced k, by oo in
the second integral because F, (k, t) tends to zero rapidly
for k )ko exp(ht}, and we have used the integral relation
(5) [C(0)=1 for our choice of initial condition]. We now
reverse the order of integration and replace t* by ~ us-
ing the fact that F, (k, t) goes to zero rapidly at fixed k as
tab oo [cf. (15) and (20)]. We thus obtain

f k~
dk Fz(k, t ~ oo ) =st, =h 'r ln(k, /ko) .

Differentiating with respect to k, yields (7b), Batchelor"s
law,

F2(k, t ~ oo }=r(hk ) (25)

Thus, for the steady-state problem in which we previous-
ly found the measure p to have no fractal properties, the
power spectrum is found to obey a power law, namely,
Batchelor's law, Eq. (7b). Our present analysis allows for
a simple interpretation of Batchelor's law. We have seen
that in the initial-value problem the product kFi(k, t) is
peaked at a value of k =k =ko exp(ht) [cf. Eq. (14)] and
has a fixed area under the curve F, (k, t) according to (5).
This reflects the fact that a fixed amount of scalar vari-
ance (P (x)) is initially present at long wavelengths,
k —ko, and then "cascades" to shorter and shorter wave-
lengths with the typical value of k growing exponentially
in time dk/dt =kh. In the steady-state problem, scalar
variance is continually injected at long wavelength, and
then "cascades" to short wavelength. The time-
asymptotic power spectrum F2(k, t ~ oo ) then is a sum-
mation (integral) of the initial-value spectrum F, (k, t) at
its various stages of evolution. Thus, F~(k, t~ o) ios

composed of contributions of scalar variance which were
injected at di6'erent times in the past. This leads to Eq.
(24) which states that F2(k, t ~ oo ) is the time integral of
F, (k, t). The inverse k dependence of F2 follows from the
rate at which the scalar variance "cascades" in k. Name-
ly, I'2 at a particular value of k is inversely proportional
to the rate at which the variance is cascading in k, name-
ly, dk/dt=kh. Hence, we obtain Batchelor's law, Eq.
(25).

IV. CONCLUSION

In this paper we have studied the connection between
the power spectrum for the correlation function and the
fractal properties of the measure of the gradient of a pas-
sively convected scalar. A smooth chaotic flow was as-
sumed, and the scalar was injected on a length scale
smaller than the scale length of the flow. These assump-
tions allowed for a straightforward calculation of the
power spectrum.

Important distinctions were found between the initial-
value problem and the steady-state problem and between
the case where the flow possesses KAM regions and the
case where there are no KAM regions. In particular, in
the initial-value problem, the measure has fractal proper-
ties, and the power spectrum of the correlation function
exhibits a wave-number dependence which is not neces-
sarily a power law. An expression was obtained for the
power spectrum in terms of the distribution of the finite-
time Lyapunov exponents for the flow, and a method of
determining the fractal properties of the measure of the
gradient from the power spectrum was demonstrated.

In the initial-value problem the shape of the power
spectrum depends on whether the underlying flow con-
tains KAM surfaces. In the absence of KAM surfaces
the power spectrum has the shape of a pulse (see Fig. 1).
When KAM surfaces are present, the power spectrum
has two components. One component is a pulse, as in the
case with no KAM surfaces. The other component,
which is due to the orbits which have been stuck near
KAM surfaces, has the character of a wake left by the
pulse (see Fig. 1). For values of k which fall in the wake,
the power spectrum has an approximate inverse k depen-
dence. In the steady-state problem it was shown that the
power spectrum always has an inverse k dependence (as
predicted by Batchelor [5]).

At first it might seem that the steady-state problem is
more appropriate to experiments in which the scalar is
continually injected and the power spectrum is computed
by taking a time average of the scalar measured at a lim-
ited number of spatial points, or by taking the time corre-
lation function at a single point. However, if the scalar is
injected in a localized region of space (e.g., at a bound-
ary), and a mean fiow away from the boundary is present,
then the initial-value results may be relevant. In particu-
lar, in such a situation the time in the initial-value prob-
lem plays the role of the position downstream from the
injection region (i.e., the mean time for a fiuid element to
travel from the injection point to the observation point).
The validity of this consideration, of course, must be in-
vestigated on a case by case basis. Situations of this type
could conceivably occur in recent experiments on fluid
jets [6] and on thermal convection [12].

Finally, we wish to call attention to the similarity of
the present problem to that of fiuid turbulence. In partic-
ular, for the latter problem, it has been shown that the
square of the vorticity

~
V X v~ concentrates on a fractal

in the limit of infinite Reynolds number and that the frac-
tal nature of the vorticity is connected with the
phenomenon of intermittency in the turbulence [13]. A
coherent theory of the fractal distribution of vorticity in
high-Reynolds-number fluid turbulence remains an im-



MULTIFRACTAL POWER SPECTRA OF PASSIVE SCALARS. . . 857

portant outstanding problem. In this paper we have con-
sidered the much simpler passive scalar problem and
have found results that, in some respects, are roughly
analogous to those in Quid turbulence.
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