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It is shown that, in the infinite size limit, certain systems of globally coupled phase oscillators
display low dimensional dynamics. In particular, we derive an explicit finite set of nonlinear
ordinary differential equations for the macroscopic evolution of the systems considered. For ex-
ample, an exact, closed form solution for the nonlinear time evolution of the Kuramoto problem
with a Lorentzian oscillator frequency distribution function is obtained. Low dimensional behavior
is also demonstrated for several prototypical extensions of the Kuramoto model, and time-delayed
coupling is also considered. © 2008 American Institute of Physics. �DOI: 10.1063/1.2930766�

Because synchronous behavior in large groups consisting
of many coupled oscillators has been widely observed in
many situations, the behavior of such systems has long
been of interest. Since the problem is difficult to solve in
general, much work has been done on the simple para-
digmatic case of globally coupled phase oscillators. Even
in this simple context, however, much remains unclear,
particularly when considering situations in which a large
oscillator population interacts with external dynamical
systems, or when there are communities of interacting
oscillators with different community and connection
characteristics, etc. In this paper we consider an ap-
proach that allows the study of the time evolving dynami-
cal behavior of these types of systems by an exact reduc-
tion to a small number of ordinary differential equations.
This reduction is achieved by considering a restricted
class of states. In spite of this restriction, for at least one
significant example (see Ref. 10), consideration of our de-
rived ordinary differential equations appears to yield dy-
namics in precise agreement with results obtained from
considerations not imposing this restriction. Thus we be-
lieve that our results may be useful in many other
contexts.

I. INTRODUCTION

Understanding the generic behavior of systems consist-
ing of large numbers of coupled oscillators is of great interest
because such systems occur in a wide variety of significant
applications.1 Examples are the synchronous flashing of
groups of fireflies, coordination of oscillatory neurons gov-
erning circadian rhythms in animals,2 entrainment in coupled
oscillatory chemically reacting cells,3 Josephson junction
circuits,4 neutrino oscillations,5 bubbly fluids,6 etc. A key
contribution in this area was the introduction of the follow-
ing model by Kuramoto:7

d�i�t�/dt = �i +
K

N
�
j=1

N

sin�� j�t� − �i�t�� , �1�

where the state of oscillator i is given by its phase �i�t� �i
=1,2 , . . . ,N�, �i is the natural frequency of oscillator i, and
the coupling constant K specifies the strength of the influence

of one oscillator on another. It has been shown7,8 that in the
N→� limit there is a continuous phase transition such that,
for K below a critical value �K�Kc�, no coherent behavior
of the system occurs �i.e., there is no global correlation be-
tween the oscillator phases�, while above the critical cou-
pling strength �K�Kc�, the system displays global coopera-
tive behavior �i.e., partial or complete synchronization of the
phases�.

Among other problems related to Eq. �1� that we shall
also consider are the case where there is a sinusoidal periodic
external drive of strength � added to the right-hand side of
Eq. �1� �see Refs. 9 and 10�,

d�i/dt = �i +
K

N
�
j=1

N

sin�� j − �i� + � sin��t − �i� , �2�

and the case where there are several communities of different
kinds of oscillators where the evolution of the phases �i

��t� of
oscillators in community � is given by �see Refs. 11 and 12�

d�i
�/dt = �i

� + �
��=1

s K���

N��
�
j=1

N��

sin�� j
�� − �i

�� . �3�

Here �=1,2 , . . ., s, N� is the number of oscillators of type �,
and K��� is the strength of the coupling from oscillators in
community �� to oscillators in community �. For all three
cases �Eqs. �1�–�3��, we are interested in the limit N→�. We
will also consider such problems with time delayed coupling
�e.g., � j�t�→� j�t−	� in Eqs. �1�–�3��.

The problem stated in Eq. �2� was first considered by
Sakaguchi.9 It can, for example, be motivated as a model of
circadian rhythm.2 Circadian rhythm in mammals is gov-
erned by the suprachiasmatic nucleus that is located in the
brain and consists of a large population of oscillatory neu-
rons. These neurons presumably couple with each other and
are also influenced �though the optic nerve� by the daily
variation of sunlight �modeled by the term in Eq. �2� involv-
ing ��. In Ref. 10 we found numerical and analytical evi-
dence that the bifurcations and macroscopic dynamics of Eq.
�2� with large N appeared to be similar to what might be
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expected for the dynamics of a two-dimensional dynamical
system. This observation was the motivation for the present
paper.

The problem stated in Eq. �3� has been previously con-
sidered in Refs. 11 and 12 where the linear stability of the
incoherent state was investigated along with numerical solu-
tions for the nonlinear evolution.

II. NATURE OF THE MAIN RESULT

Considering the limit N→�, the state of the oscillator
system at time t can be described by a continuous distribu-
tion function, f�� ,� , t�, in frequency � and phase � for the
problems in Eqs. �1� and �2� or by f��� ,� , t� with �
=1,2 , . . . ,s for the problem in Eq. �3�, where

�
0

2


f��,�,t�d� = g��� or �
0

2


f���,�,t�d� = g���� ,

and g��� and g���� are time independent oscillator fre-
quency distributions.

Our main result is as follows. For initial distribution
functions f�� ,� ,0� satisfying a certain set of conditions that
we will specify later in this paper, we show that

�i� the evolution of f�� ,� , t� from f�� ,� ,0� continues to
satisfy the specified conditions;

�ii� for appropriate g��� �or g�����, the macroscopic sys-
tem state obeys a finite set of nonlinear ordinary dif-
ferential equations, which we obtain explicitly.

Concerning �i�, we define a distribution function h�� ,��
as a function for which h�0 and �0

2
d��d�h=1, and the
distribution functions h�� ,�� satisfying our conditions form
a manifold M in the space D of all possible distribution
functions. What point �i� says is that initial states in M �D
evolve to other states in M. Thus M is “invariant” under the
dynamics. Concerning point �ii�, we use the so-called “order-
parameter” description to define the macroscopic system
state. We define the order parameter �or parameters in the
case of Eq. �3�� subsequently �Eq. �5�� in terms of an integral
over the distribution function f �or f� for Eq. �3��, where this
order-parameter integral globally quantifies the degree to
which the entire ensemble of oscillators �or ensembles � for
Eq. �3�� behaves in a coherent manner. According to point
�ii� the evolution of the order parameters is exactly finite
dimensional even though the manifold M and the dynamics
of the distribution function f as it evolves in M are infinite
dimensional.

The macroscopic dynamics we obtain allows for much
simplified investigation of the systems we study. For ex-
ample, we obtain an exact closed form solution for the non-
linear time evolution of the Kuramoto problem, Eq. �1�, for
the case of Lorentzian g���. Our formulation will be practi-
cally useful if at least some of the macroscopic order-
parameter attractors and bifurcations of the full dynamics in
the space D are replicated in M. In this regard, we note that
numerical solutions of the system �2� for large N have been
carried out in Ref. 10, and the resulting macroscopic order-
parameter attractors, as well as their bifurcations with varia-
tion of system parameters, have been fully mapped out.

Comparing these numerical results for the full system �Eq.
�2�� with results for the corresponding low dimensional sys-
tem for the dynamics on M �Eq. �14��, we find that all �not
just some� of the macroscopic order-parameter attractors and
bifurcations of Eq. �2� with Lorentzian g��� are precisely
and quantitatively captured by examination of the dynamics
on M. These results for the problem given by Eq. �2� suggest
that our approach may be useful for other situations such as
Eq. �3�. Another notable point is that Ref. 10 also reports
numerical simulation results for Eq. �2� with large N for the
case of a Gaussian oscillator distribution function, g���
= �2
�2�−1/2 exp�−��−�0�2 / �2�2��, and the macroscopic
order-parameter attractors and bifurcations in this case are
found to be the same as those in the Lorentzian case �albeit at
different parameter values�. Thus, at least for problem �2�,
phenomena for Lorentzian g��� are not special and should
give a useful indication of what can be expected for other
unimodal distributions g���.

III. DERIVATION FOR THE EXAMPLE
OF THE KURAMOTO PROBLEM

We now support points �i� and �ii� for the case of the
Kuramoto problem, Eq. �1�. Following that, we will consider
other problems, including those associated with Eqs. �2� and
�3�. Because of its relative simplicity, in this section we use
the Kuramoto problem as an example, but we emphasize that
our interest is primarily in developing a method that will be
useful in less simple cases, such as the problems stated in
Eqs. �2� and �3� �see Sec. IV�. Following Kuramoto,7,8 we
note that the summation in Eq. �1� can be written as

1

N
�

j

sin�� j − �i� = Im�e−i�i
1

N�
j

ei�j	 = Im�re−i�i� ,

where r=N−1�exp�i� j�. Letting N→� in Eq. �1�, f�� ,� , t�
satisfies the following initial value problem:

� f/�t + �/��
�� + �K/2i��re−i� − r*ei���f� = 0, �4�

r = �
0

2


d��
−�

+�

d�fei�, �5�

where r�t� is the order parameter, and Eq. �4� is the conti-
nuity equation for the conservation of the number of oscilla-
tors. Note that by its definition �5�, r satisfies �r � 1. Ex-
panding f�� ,� , t� in a Fourier series in �, we have

f = �g���/2
��1 + �
n=1

�

fn��,t�exp�in�� + c.c.�	 ,

where c.c. stands for complex conjugate. We now consider a
restricted class of fn�� , t� such that

fn��,t� = ����,t��n,

where ���� , t� � 1 to avoid divergence of the series. Substi-
tuting this series expansion into Eqs. �4� and �5�, we find the
remarkable result that this special form of f represents a
solution to Eqs. �4� and �5� if

��/�t + �K/2��r�2 − r*� + i�� = 0, �6�

037113-2 E. Ott and T. M. Antonsen Chaos 18, 037113 �2008�

 15 July 2023 16:47:47



r* = �
−�

+�

d����,t�g��� . �7�

Thus this special initial condition reduces the �-dependent
system, Eqs. �4� and �5� to a problem �6� and �7�, that is
�-independent. However, we emphasize that Eqs. �6� and �7�
still constitute an infinite dimensional dynamical system be-
cause any initial condition is a function of �, namely
��� ,0�. Performing the summation of the Fourier series us-
ing �n=1

� xn=x / �1−x�, we obtain

f��,�,t� =
g���
2


�1 − �����1 + ����
�1 − ����2 + 4��� sin2� 1

2 �� − ��� , �8�

where ���� �e−i� and � real. For �� � �1 we can explicitly
verify from Eq. �8� that f �0, �d�f =g��� /2
, and that as
�� � ↗1 we have f →���−��g��� /2
. In order that Eqs. �6�
and �7� represent a solution of Eq. �5� for all finite time, we
require that, as ��� , t� evolves under Eqs. �6� and �7�,
���� , t� � 1 continues to be satisfied. This can be shown by
substituting �= �� �e−i� into Eq. �6�, multiplying by ei�, and
taking the real part of the result, thus obtaining

� ���/�t + �K/2�����2 − 1�Re�re−i�� = 0. �9�

We see from Eq. �9� that ��� � /�t=0 at �� � =1. Hence a tra-
jectory of Eq. �6�, starting with an initial condition satisfying
���� ,0� � �1 cannot cross the unit circle in the complex
�-plane, and we have ���� , t� � �1 for all finite time,
0 t� +�.

One way to motivate our ansatz, fn=�n, is to note that
the well-known stationary states of the Kuramoto model,7,8

both the incoherent state �f =g /2
 corresponding to �=0�
and the partially synchronized state with �r � =const�0, both
conform to fn=�n. Thus one view of the ansatz is that it
specifies a family of distribution functions that connect these
two states in a natural way.

To proceed further, we now introduce another restriction
on our assumed form of f; we require that ��� , t� can be
analytically continued from real � into the complex �-plane,
that this continuation has no singularities in the lower half
�-plane, and that ���� , t� � →0 as Im���→−�. If these con-
ditions are satisfied for the initial condition, ��� ,0�, then
they are also satisfied for ��� , t� for �� t�0. To see that
this is so, we first note that for large negative �i=Im���, Eq.
�6� is approximately �� /�t=−��i ��, and thus ��� , t�→0 as
�i→−� will continue to be satisfied if ��� ,0�→0 as �i

→−�. Next we note from Ref. 13, that ��� , t� is analytic in
any region of the complex �-plane for which ��� ,0� is ana-
lytic provided that the solution ��� , t� to Eq. �6� exists. To
establish existence for 0 t� +� it suffices to show that the
solution to Eq. �6� cannot become infinite at a finite value of
t. This can be ruled out by noting that our derivation of Eq.
�9� with � now complex carries through except that there is
now an additional term −�i ��� on the left-hand side of the
equation. Thus at �� � =1 we have ��� � /�t=�i �� � �0, and we
conclude that, if ���� ,0� � �1 everywhere in the lower half
complex �-plane, then ���� , t� � �1 for all finite time 0 t
� +� everywhere in the lower half complex �-plane.

Regarding the initial condition ��� ,0�, we note that, if
���� ,0� � 1 for � real, if the continuation ��� ,0� is ana-
lytic everywhere in the lower half �-plane, and if the con-
tinuation satisfies ���� ,0� � →0 as �i→−�, then the continu-
ation satisfies ���� ,0� � �1 everywhere in the lower half
complex �-plane.14 Examples of possible initial conditions
are k exp�−i�c� with Re�c��0 and �k � 1, k / ��−d� with
�k �  Im�d�, and �0

�k�c�exp�−i�c�dc with �0
� �k�c� �dc1.

We can now specify the invariant manifold M on which
our dynamics takes place. It is the space of functions of the
real variables �� ,�� of the form given by Eq. �8� where
���� , t� � 1 for real �; ��� , t� can be analytically continued
from the real �-axis into the lower half �-plane; and, when
continued into the lower half �-plane, ��� , t� has no singu-
larities there and approaches zero as �i→−�.

Now taking g��� to be Lorentzian

g��� = gL��� � ��/
���� − �0�2 + �2�−1,

we can do the � integral in Eq. �7� by closing the contour by
a large semicircle in the lower half �-plane. Writing gL���
= �2
i�−1���−�0− i��−1− ��−�0+ i��−1�, we see that the in-
tegral is given by the residue of the pole at �=�0− i�. By a
change of variables �� ,��→ ��−�0t , ��−�0� /��, we can,
without loss of generality set �0=0, �=1. Thus we obtain
r�t�=�*�−i , t�. Putting this result into Eq. �6� and setting �
=−i, we obtain the nonlinear evolution of the order param-
eter r=�e−i� ���0 and � real�,

d�/dt + �1 − 1
2K�� + 1

2K�3 = 0, �10�

and d� /dt=0. Thus the dynamics is described by the single
real nonlinear, first order, ordinary differential equation, Eq.
�10�. The solution of Eq. �10� is

��t�
R

= �1 + � R

��0��2

− 1	e�1−�1/2�K�t�−1/2
, �11�

where R= �1− �2 /K��1/2. We see that for K�Kc=2, the order
parameter goes to zero exponentially with increasing time,
while for K�2 it exponentially asymptotes to the finite value
�1− �2 /K��1/2, in agreement with the known time-asymptotic
results for the case g=gL �e.g., see Ref. 8�. Plots of the non-
linear evolution of ��t� are shown in Fig. 1. Linearization of
Eq. �10� yields an exponential damping rate of �1− �K /2��
for perturbations around �=0 for K�2, which becomes un-
stable for K�Kc=2, at which point the stable nonlinear

FIG. 1. The order parameter �= �r� vs time.
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equilibrium at �=�1− �2 /K� comes into existence. For
K�Kc linearization of Eq. �10� around the equilibrium �

=�1− �2 /K� yields a corresponding perturbation damping
rate ��K /2�−1�. For g=gL the latter damping rate can also be
obtained from the recent stability analyses of solutions of
Eqs. �4� and �5�.10,15 We emphasize that our solution for r�t�
obeys two uncoupled first order real ordinary differential
equations �Eq. �10� and d� /dt=0�, while the problem for
��� , t� �Eqs. �6� and �7�� is an infinite dimensional dynami-
cal system �i.e., to obtain ��� , t� we need to specify an initial
function of �, ��� ,0��. This is further reflected by the fact
that linearization of Eqs. �6� and �7� about their equilibria
yields a problem with a continuous spectrum of neutral
modes.15,16 Thus the microscopic dynamics in M of the dis-
tribution function is infinite dimensional, while the macro-
scopic dynamics of the order parameter is low dimensional.

IV. GENERALIZATIONS

A. Other distributions g„�…

So far we have restricted our discussion to the case of
the Lorentzian gL���. We now consider

g��� = g4��� � ��2/
���4 + 1�−1,

which decreases with increasing � as �−4, in contrast to
gL��� which decreases as �−2. The distribution g4��� has
four poles at �= ��1� i� /�2. Proceeding as before, we ap-
ply the residue method to the integral equation �7� to obtain

r�t� = 1
2 ��1 + i�r1�t� + �1 − i�r2�t�� ,

where

r1,2 = �*���1 − i�/�2,t�

and r1,2�t� obey the two coupled nonlinear ordinary differen-
tial equations,

dr1,2/dt + �K/2��r*r1,2
2 − r� + ��1 � i�/�2�r1,2 = 0. �12�

Thus we obtain a system of two first order complex nonlin-
ear differential equations. Indeed, the above considerations
can be applied to any g��� that is a rational function of �
�i.e., g���= P1��� / P2��� where P1��� and P2��� are poly-
nomials in ��. The requirement that g��� be normalized
��g���d�=1� and real puts restrictions on the possible
P1,2���, e.g., P2��� must have an even degree, 2m, and all its
roots must come in complex conjugate pairs �it cannot have
a root on the real � axis�. Such a g��� has m poles in the
lower half �-plane, and application of our method yields m
complex, first order ordinary differential equations for m
complex order parameters. For instance, for the example,
g���=g4���, above, there are two poles in Im����0,
namely, �= ��1− i� /�2, and these two poles result in the
two order parameters r1 and r2.

B. External driving

We now consider the Kuramoto problem with an exter-
nal drive, Eq. �2�. Again taking the N→� limit for the num-
ber of oscillators, we obtain

� f

�t
+

�

��
� f�� − �� +

1

2i
�Kr + ��e−i� −

1

2i
�Kr + ��*ei��	

= 0, �13�

with r�t� given by Eq. �5�. In writing Eq. �13�, we have
utilized a change of variables �→�+�t to remove the ei�t

time dependence that would otherwise appear multiplying
the � terms. Again assuming that g��� is a Lorentzian with
unit width �=1 peaked at �=�0, and proceeding as before,
we obtain the following equation for r�t�:

dr/dt + 1
2 ��Kr + ��*r2 − �Kr + ��� + �1 + i�� − �0��r = 0.

�14�

Equilibria are obtained by setting dr /dt=0 in Eq. �14�. De-
pending on parameters �K ,� ,��, there are either one or
three such equilibria.10 Also, depending on the parameters,
there may be an attracting limit cycle. Whether the equilibria
are attractors for Eq. �14� depends on their stability which
can be assessed by linearization around the equilibria. The
equilibria obtained for Eq. �14� and their stability are the
same as obtained by the analysis of the full system �13� as
performed in Ref. 10. Furthermore, the bifurcations and sta-
bility of the limit cycle are the same as numerically found in
Ref. 10. Thus, for this problem, it appears that the important
observable macroscopic dynamics is contained entirely
within the invariant manifold M.

C. Communities of oscillators

Turning now to the problem of coupled communities of
Kuramoto systems given by Eq. �3�, we introduce different
Lorentzians for each community,

g���� = 
−1��� − ���2 + ��
2�−1,

and proceed as before. We obtain a coupled system of equa-
tions for the order parameter associated with each commu-
nity �,

dr�/dt + �− i�� + ���r� +
1

2 �
��=1

s

K����r��
* r�

2 − r��� = 0, �15�

where �=1,2 , . . . ,s. Thus we obtain s complex coupled dif-
ferential equations where s is the number of communities.
We conjecture that, for s large enough �e.g., s�2 or 3� and
appropriate parameter values, there may be chaotic attracting
solutions for Eq. �15�. It would be particularly interesting to
see whether such solutions in M are also attractors for the
macroscopic order-parameter behavior of the full system �3�,
e.g., by comparing numerical solutions of Eqs. �3� and �15�.

D. Time-delayed coupling

In applications time delay in the coupling between dy-
namical units in a network is often present. For example, the
propagation speed of signals between units is finite �e.g.,
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along axons in a neural network�, and there may also be an
inherent response time of a unit to information that it re-
ceives. Thus time delay has been extensively studied in the
context of networks of coupled systems, and in particular for
the case of coupled phase oscillators.17–19 It has been found
for such systems that time delay can substantially modify the
dynamics, leading to a much richer variety of behaviors. In
the context of Eqs. �1�–�3�, for example, the response of
oscillator i at time t to input from oscillator j is now related
to the state � j of oscillator j at time �t−	 ji�, where 	 ji is the
time delay for this interaction. Assuming that all the delay
times are the same, 	 ji=	, independent of i and j, the quan-
tities � j�t� appearing in the summations in Eqs. �1�–�3� must
now be replaced by � j�t−	�. Again such a generalization can
be straightforwardly incorporated into our method. For ex-
ample, for the external drive problem �Eq. �2� and Sec. IV B�
we have in place of Eq. �2�,

d�i�t�
dt

= �i +
K

N
�
i=1

N

sin�� j�t − 	� − �i�t�� + � sin��t − �i�t�� .

�16�

Going to a rotating frame, �i��t�=�i�t�−�t, ��=�−�, Eq.
�16� becomes

d�i��t�
dt

= �i� +
K

N
�
i=1

N

sin�� j��t − 	� − �i��t� − �	� − � sin �i��t� .

�17�

The summation in Eq. �17� is

K

N
Im�e−i��i��t�+�	��

j=1

N

ei�j��t−	�	 = K Im
e−i��i��t�+�	�r�t − 	�� .

�18�

Thus, to include delay, it suffices to replace the term
�Kr�t�+�� in Eqs. �13� and �14� by �Ke−i�	r�t−	�+��. For
example, making this substitution in Eq. �14� and setting �
=0, �=�0 yields the following first order delay-differential
equation for the order-parameter of the standard Kuramoto
model with coupling delay,

dr�t�
dt

−
K

2

e−i�0	r�t − 	� − ei�0	r*�t − 	��r�t��2� + r�t� = 0,

�19�

which returns Eq. �10� for 	→0. We note that our reduced
descriptions with delay �e.g., Eq. �19�� are �in contrast to
Eqs. �10�, �14�, and �15�� now infinite dimensional dynami-
cal systems. For small �r�, linearizing Eq. �19� about the in-
coherent state �r=0�, and setting r�est yields a dispersion
relation for s,

s + 1 = �K/2�exp�− �s + i�0�	� , �20�

in agreement with Ref. 18. In addition, steady synchronized
states can be found �as in Ref. 19� by setting r�t�=r0ei�t in
Eq. �19� and solving the result,

i� −
K

2
�e−i��0+��	 − r0

2ei��0+��	� + 1 = 0, �21�

for the real constants � and r0. Furthermore, through linear-
ization of Eq. �19� about r=r0ei�t, our formulation can be
used to study the previously unaddressed problem of assess-
ing the stability of the steady synchronized states, Eq. �21�.

E. The millennium bridge problem, Ref. 20

Another example is that of the observed oscillation of
London’s Millennium Bridge induced by the pacing phase
entrainment of pedestrians walking across the bridge as mod-
eled by Eqs. �52� and �53� of Eckhardt et al.20 In that case,
assuming a Lorentzian distribution of natural pacing frequen-
cies for the pedestrians, one can use the method given in our
paper to obtain an ordinary differential equation for the me-
chanical response of the bridge coupled to another ordinary
differential equation for the order parameter describing the
collective state of the pedestrians.

V. DISCUSSION AND CONCLUSION

Low dimensional descriptions of the classical Kuramoto
problem �Eq. �1�� have been previously attempted. An early
such attempt was made by Kuramoto and Nishikawa21 who
used a heuristic approach resulting in an integral equation for
r�t�. On the basis of their work they predict that for small
�r�0�� the order-parameter r�t� initially grows �decays� expo-
nentially in time for K�Kc �K�Kc� �later shown rigorously
and quantitatively in Ref. 16�. Crawford,22 using center
manifold theory, obtains �Eq. �108� of Ref. 22� an equation
of the form d� /dt=a�K−Kc��+b�3+O��5� for K near Kc.

Another work of interest is that of Watanabe and Strogatz23

who consider the case where all oscillators have the same
frequency for both finite and infinite N. By use of a nonlinear
transformation of the phase variables �i�t�, these authors
show that the dynamics reduces to a solution of three
coupled first order ordinary differential equations. Thus,
while macroscopic behavior of order-parameter dynamics
has been previously addressed for the standard Kuramoto
problem, it has, until now, never been demonstrated fully
�e.g., without the restriction of Ref. 22 to small amplitude, or
the restriction of Ref. 23 to identical frequencies�. Our paper
does this and also demonstrates that our technique can be
usefully applied to a host of other important related prob-
lems.

Our work also suggests other future lines of study. For
example, can any rigorous results be obtained relevant to
whether our macroscopic order-parameter attractors obtained
by considering f in the manifold M have general validity?24

Are there interesting qualitative differences between the be-
havior for Lorentzian g��� as compared to other monotonic
symmetric oscillator distribution functions g���? What other
systems, in addition to those discussed in Sec. IV, can our
method be applied to?
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