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Communication with a chaotic traveling wave tube microwave generator
Vasily Dronov,a) Matthew R. Hendrey, Thomas M. Antonsen, Jr.,b) and Edward Ottb)

Institute for Research in Electronics and Applied Physics, and Department of Electrical
and Computer Engineering, University of Maryland, College Park, Maryland 20742
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Traveling wave tubes~TWTs! are vacuum electronic amplifiers~see Beck, Gittins, and Pierce! that
are commonly used for communication in the centimeter wavelength range. Increasing demand for
high data flow in wireless communication systems~satellite communication systems are a good
example! raises needs for making TWT’s more compact and efficient. Motivated by this we suggest
a scheme in which a TWT with feedback is operated in a highly nonlinear regime where the device
behaves chaotically. The chaos is controlled using small controls. Then, at the receiving end a
receiving TWT synchronizes to the chaotic transmitter and amplifies the received signal with nearly
no distortion. Results on numerical simulations of the proposed scheme are reported and used to
evaluate its effectiveness. ©2004 American Institute of Physics.@DOI: 10.1063/1.1622352#

In this paper we consider a scheme for microwave com-
munication where we are attempting to use an alternative
means of ‘‘modulation’’ for the encoding of binary infor-
mation. Both the transmitter and receiver in our scheme
use a traveling wave tube„TWT …, a high power vacuum
electronic amplifier commonly used in communication
satellites, etc. In our scheme, however, TWT behaves cha-
otically and modulation is achieved by means of control-
ling chaotic dynamics of the tube. The main advantage of
such a scheme is an increase in power efficiency of the
transmitting amplifier. We believe that this work may be
relevant in applications where the key requirements for
communication system design are compactness and
power efficiency. We present a model for the proposed
communication scheme as well as results of numerical
simulations of the model equations.

I. INTRODUCTION

In the system we envision, the signal sent by the trans-
mitter is generated by a traveling wave tube~TWT!
oscillator1–3 operating in the chaotic regime. That is, under
the supposed operating conditions, the TWT naturally pro-
duces a narrow band microwave signal with temporally cha-
otic phase and amplitude variations. We show that, if suitable
small perturbations are applied to the TWT, the symbolic
dynamics of the chaotic TWT can be controlled. Following
the idea of Hayeset al.,4,5 the information being transmitted
is encoded in the controlled symbolic dynamics of the chaos.

The detection of the signal at the receiver can be accom-
plished by use of a replica of the transmitter’s chaotic TWT
oscillator. The small received signal is amplified by the rep-
lica receiver system through the phenomenon of synchroni-
zation of chaos.6 This provides a potentially simple, cheap,
and compact amplifier for the detector system, which is only

possible because the original signal was produced by a cha-
otic system. A notable feature of this scheme is that, in the
ideal case, the signal amplification is in principal distortion-
less, even though the process is nonlinear~the nature of dis-
tortionless amplification is explained in Sec. V!. In applica-
tions where the benefits of receiver simplicity and
compactness are paramount~e.g., satellite-based communi-
cation!, our scheme may provide an advantage.

In Sec. II we describe a model for a TWT feedback
oscillator. In Sec. III we investigate this model through nu-
merical simulations, display its chaotic behavior and charac-
terize this behavior. In Sec. IV we discuss how, following the
scheme of Refs. 4 and 5, information can be encoded in the
TWT oscillator output through control of the symbolic dy-
namics of the chaos. In Sec. V we discuss the possibility of
using the phenomenon of synchronization of chaotic systems
for the purpose of efficiently amplifying and retransmitting a
chaotic signal of the type discussed in Sec. IV. A noise analy-
sis of such a chaos-based communication system is given in
Sec. VI. In Sec. VII we present further discussion and sum-
marize our conclusions.

Finally, we wish to emphasize that our motivation for
considering TWT oscillator operation in the chaotic regime
is the possibility of attaining improved power efficiency and
device compactness. In particular, unlike some other work
using chaos in communications,7,8 secrecy is not one of our
goals.

II. THE MODEL

In this section we review a model for the nonlinear op-
eration of a TWT which can be made to oscillate by adding
feedback. We model the TWT in the following way. Assume
that the signal at the input isAine

ivct where Ain(t) is the
complex envelope of the signal andvc is the carrier or ref-
erence frequency. The linear behavior of the tube is modeled
as a first-order bandpass filter with the bandwidth 2Dv, cen-
tered near the carrier frequency. The linear gain of the filter
is GL . Nonlinearity arises due to power saturation as the
electron beam bunches toward the output end of the TWT. A
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small fractionr of the output is then fed back into the input
through a feedback line with delay timet. Performing a fre-
quency shiftv→v2vc we translate the analysis to low fre-
quency~i.e., Aine

ivct→Ain) so that the time variation of the
complex variableAin represents the slow amplitude and
phase modulation of Re@Aine

ivct#. A schematic diagram of
the model in this low-frequency representation is shown in
Fig. 1.

The inputĀin(v) and the outputĀ(v) of the first-order
low-pass filter with the bandwidth 2Dv are related by

Ā~v!5
GLĀin~v!

11 iv/Dv
,

and, therefore,

Āin~v!5
Ā~v!~11 iv/Dv!

GL
,

in the frequency domain, and

Ain~ t !5F ~Dv!21
d

dt
11G A~ t !

GL
,

in the time domain. In general the frequency dependence of
the linear transfer function for a TWT is more complicated
than a simple first-order bandpass filter. We adopt the first-
order bandpass filter here because that is the simplest model
giving a nonzero memory time. Since TWT amplifiers are
broadband, our model can be realized by inserting a narrow
band first-order filter in the signal path. The TWT output
~Fig. 1! is

R~ t !5A~ t !
eihuA(t)u2

11uA~ t !u2
, ~1!

where the term@exp(ihuA(t)u2)#@11uA(t)u2#21 models the non-
linearity of the TWT withh being a parameter characterizing
the quadratic phase nonlinearity, and the coefficient of
uA(t)u2 in the denominator of~1! can be set to 1 using a
suitable normalization ofA(t). This model of the nonlinear-
ity is one of a class of models due to Saleh9 which have been
used in the community10 to simulate communications sys-
tems with TWT’s. SinceAin(t)5rR(t2t), the equation for
A(t) becomes

dA~ t !

dt
1A~ t !5kA~ t2t!

eihuA(t2t)u2

11uA~ t2t!u2 , ~2!

wherek is the loop gain,k5rGL , and the bandwidthDv
has been normalized to unity by means of a rescaling of the
time variables, i.e.,t→tDv andt→tDv.

Note that our modeling of a TWT as consisting of linear
and nonlinear stages~as illustrated in Fig. 1! is only an ap-
proximation and that such a sharp decomposition does not
truly exist. Nevertheless, it has been found9,10 that Eq.~2! is
very effective at modeling real TWT experiments. Also note
that the model variableA(t), the output of the fictious linear
stage, is not a measurable physical quantity, but thatR(t),
given in Eq.~1! in terms ofA(t), does represent a measur-
able physical quantity.

It is also important to mention that, while a wide variety
of TWT models exist3,9,10 with varying complexity,11–13 the
unique property of our model is that it is perhaps the simplest
that is able to describe the behavior of a TWT oscillator with
feedback.

III. CHAOTIC BEHAVIOR

The right-hand side of Eq.~2! contains a delayed argu-
mentA(t2t). Thus~2! is an infinite dimensional dynamical
system@to evolveA(t) forward from t5t, we must specify
the function A(t) in 0<t<t]. The dynamics of the system
can, however, be finite dimensional or even low dimensional.
In particular, the system state may asymptote to a low dimen-
sional subset of the infinite dimensional state space. This
subset is called an attractor. We are interested in the case
where the system motion on the attractor is chaotic. In the
case of low dimensional chaotic dynamics, it is often feasible
to find a phase space partition and the corresponding sym-
bolic dynamics for the chaotic attractor. However, there is no
common recipe for finding a parameter set that makes the
dynamics chaotic and low dimensional. A powerful tool that
can be helpful in this situation is the set of Lyapunov expo-
nents for the system. Our goal is to arrive at a situation
where the largest Lyapunov exponent is positive~yielding
chaos! while others are either zero or negative~in order to
provide contraction of the flow in the directions normal to
the expansion direction!.

In order to compute the Lyapunov exponents we con-
sider an infinitesimal variation fromA(t), denoteddA(t).
Equation~2! yields the following linearized equation fordA:

FIG. 1. Schematic of the free-running
chaotic oscillator.
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d@dA~ t !#

dt
1dA~ t !

5k
eihuA(t2t)u2

11uA~ t2t!u2 FdA~ t2t!1A~ t2t!

3H ih2
1

11uA~ t2t!u2J $A~ t2t!dA* ~ t2t!

1A* ~ t2t!dA~ t2t!%G , ~3!

where dA* is the complex conjugate ofdA. In order to
compute the firstN exponents, we start withN unit norm
orthogonal functionsdAi5ui on the interval@0,t#, i.e.,

„ui~ t !,ui~ t !…5iui~ t !i25
1

t E0

t

$Re@ui~ t !#Re@ui~ t !#

1Im@ui~ t !#Im@ui~ t !#%dt51,

„ui~ t !,uj~ t !…5
1

t E0

t

$Re@ui~ t !#Re@uj~ t !#

1Im@ui~ t !#Im@uj~ t !#%dt50, for iÞ j .

Following the procedure described, for example, in Ref. 14,
p. 148, we integrate~3! with these initial conditions and
periodically use a Gram–Schmidt algorithm to renormalize
the functionsdAi , keeping them orthogonal as we integrate
the flow forward in time. Thei th Lyapunov exponentl i is
computed as the average rate of exponential growth of the
norm of the function dAi(t), i.e., l i5 limT→`

3(1/T)log@idAi(T)i/idAi(0)i#, where the subscript labeli is
chosen so thatl1>l2>l3>¯ .

Figure 2 shows results of a computation of the first four
Lyapunov exponents fort andh fixed andk varied. Only the
positive and least negative exponents are plotted. Two other
exponents are identically zero by virtue of the invariance of
Eq. ~2! under time translation and under a change of the

phase ofA @i.e., A→A exp(iw), wherew is a constant#. In
Fig. 3~a! we show uR(t)u versus uR(t27t/4)u for k
57.142,t50.530,h51.0. Figure 3~b! shows the return map
uRm11u5 f (uRmu), where uRmu is the value ofuR(t)u at the
m’ th passage ofuR(tm27t/4)u through the value 0.425 go-
ing from left to right @i.e., duR(t27t/4)u/dt.0 at t5tm].
We note that the return map is nearly one dimensional, indi-
cating that the dimension of the attractor in Fig. 3~a! is near
~but slightly bigger than! two.

IV. ENCODING INFORMATION VIA CONTROLLING
CHAOS

A. Choosing a partition and an appropriate
set of symbols

Partitions give a rule which assigns a symbol whenever
the state is in a certain portion of the phase space. For the
return map in Fig. 3~b!, a natural way to choose the partition
is to divide the map at its maximum, so that the left side
corresponds to ‘‘0’’ and the right-hand side to ‘‘1.’’ Such a
partition rule is often called atwo-level quantizer. Note,
however, that this partition rule is not robust with respect to
assigning correct symbols near the maximum of the curve;
i.e., noise or a small error in measuringuRmu will result in an
incorrect symbol assignment. To make our communication
system robust to noise, we will introduce a ‘‘noise-resisting
gap’’ ~Sec. IV C!. That is, we restrict the dynamics so that the
orbit never falls within an interval of width 2DR centered at
the maximum of the curve in Fig. 3~b! ~e.g., Ref. 15!.

FIG. 2. Lyapunov exponents as functions ofk, t50.530 andh51.0.

FIG. 3. ~a! Uncontrolled attractor fork57.142, t50.530 andh51.0. ~b!
Return map for the same attractor using the surface of section
uR(t27t/4)u50.425.

32 Chaos, Vol. 14, No. 1, 2004 Dronov et al.

 15 July 2023 17:17:00



B. Learning the grammar of the symbolic dynamics
of the system „which symbol sequences are
allowed …

Starting off with a particular value ofuRmu and iterating
the mapN21 times forward, one obtains a binary string of
lengthN; examining many such strings originating from dif-
ferent initial conditions gives the collection of binary strings
of length N allowed by the dynamics. Such a collection
forms the symbolic grammar of the system. In what follows,
to transmit a message consisting of an arbitrary sequence of
bits, we code the message in such a way that in can be
represented as a different bit string~possibly of length
greater than its original length! such that any substring of
length N ~with N suitably chosen! within this new string
does not violate the grammar restrictions of the free running
system.

C. Encoding information by means of controlling
the symbolic dynamics

For dynamics as in Fig. 3, techniques for encoding bi-
nary data by controlling chaos have been described in a num-
ber of papers.4,5,15,16The main idea is to utilize the exponen-
tial divergence of the flow by applying tiny perturbations to
the system in such a way as to cause a prescribed symbolic
sequence to be followed.

The method can be split into two parts.4,5,15,16

1. Learn the dynamics of the free-running system

Letting the flow for our system~2! evolve in time, we
record uRmu along with the bit string of lengthN following
this uRmu. ~In our numerical examples we useN55.) A con-
venient way to represent this bit string is to assign touRmu an
integer numbern between 0 and 2N21. For our system all
the uRmu ’s leading to the same bit sequencen fall within a
narrow interval. Taking the averagess(n) of the uRmu values
in the interval corresponding ton, we obtain a tables(n).

Thus, if we can setuRu to s(n), the orbit will follow the bit
sequencen on the surface of section. For example, in the
case when we are willing to increase immunity to noise by
means of using a ‘‘noise-resisting gap,’’ we only consider bit
strings of a lengthN that never enter the gap. This, of course,
introduces additional grammar restrictions. For example, in
the case where the gap width is 2DR50.01, the sequence
‘‘00000’’ must be ruled out when message coding is done.

2. Learn the dynamics of the perturbed system

We now apply a small reference perturbation of ampli-
tudepref to the system after everyN crossings of the surface
of section. Following an orbit for a long time, we record the
values ofuRmu just before the perturbation and note the bit
stringn that they lead to. Averaging such values we obtain a
second table,w(n). Thus the quantityw(n) is simply a per-
turbed version ofs(n). In our numerical experiments the
reference perturbation is a small pulse of fixed duration and
amplitude applied to the input of the TWT. Having found
s(n) and w(n) and assuming that the effect of the small
perturbation is linear, we now make the orbit follow a de-
sired sequencen0 by applying a perturbation of amplitude,

p5@ uRi u2s~n0!#d~n0!,

where

d~n!5
pref

w~n!2s~n!
.

An overall view of the encoding scheme is represented pic-
torically in Fig. 4. The controlled attractor is shown in Fig. 5.
Note that by construction, any segment of the controlled or-
bit of a lengthN ~and, therefore, the whole orbit! avoids the
noise-resisting gap of width 2DR indicated in Fig. 3~b!.
Therefore, the controlled orbit will also avoid all the post
images of that gap. Thus, as compared to the attractor in Fig.
3, the controlled attractor~Fig. 5! is permeated by gaps.

FIG. 4. Schematic of the controller.
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V. SYNCHRONIZATION AND RETRANSMISSION

TWT’s are commonly used in satellite communication
systems. As an example, we imagine that the encoded cha-
otic signal generator described in Sec. IV is transmitting
from a ground-based station to a satellite. We wish to receive
a signal on the satellite, amplify it, and retransmit it back to
the ground.

In our communication system we attempt to use another
TWT that is an identical~or nearly identical! replica of the
original TWT to amplify and retransmit the received signal.
Using a low power pre-amplifier, we envision restoring the
signal from the receiving antenna to the~small! amplitude
rR at the input of the transmitting TWT. Ideally~in the ab-
sence of noise and channel distortion! the input to the TWT
on the ground~from the feedback! and the TWT on the sat-
ellite ~from the preamplifier! will be identical. Thus they
produce identical outputs, and the TWT on the satellite ac-

complishes distortionless amplification to high power even
though it is operating in a fully nonlinear regime.~This
scheme may be regarded as a variant on ideas related to the
synchronization of chaotic systems.6–8!

Note that this type of synchronism-based system is only
possible because our information-bearing controlled signal is
one of the naturally occurring chaotic orbits of the original
transmitting TWT. We have also tested the robustness of our
amplification scheme to noise~see Fig. 6!.

We believe that such a system offers potential advan-
tages with respect to compactness, an important consider-
ation for a satellite system where weight is a prime concern.
Also, there is some indication that TWT’s operated in the
chaotic regime may have enhanced power efficiency as com-
pared to TWT’s operating in their stable linear range.2 This
again may be advantageous since the need for the expulsion
of waste heat from the satellite is lessened.

VI. NOISE ANALYSIS

We consider three issues:~1! bandwidth efficiency,~2!
bit error rate ~BER! dependence on signal-to-noise ratio
~SNR!, and~3! the effect of synchronization on SNR.

~1! Bandwidth efficiency. Bandwidth efficiency is de-
fined as the ratio of the bit rate to the signal bandwidth. The
bit rate is determined by the number of crossings of the Poin-
caré plane per unit time and is approximately 0.5 bits per
unit of our normalized time variable; the bandwidth can be
estimated as the portion of the power spectrum of the signal
~see Fig. 7! containing 99% of total power, which is approxi-
mately 1. Therefore, the bandwidth efficiency is approxi-
mately 0.5. For comparison, the bandwidth efficiency of a
binary PSK~phase shift keying!17 or FSK ~frequency shift
keying!17 modulated signal is 0.5. Thus, our scheme uses
bandwidth at least as efficiently as some traditionally used
modulation techniques.~Detailed information on different
types of modulation techniques and their properties can be
found in Ref. 17.!

~2! BER dependence on SNR. An upper bound for BER

FIG. 5. Controlled attractor forN55 and gap size 2DR50.01. A random
sequence of bits was used for generating the message.

FIG. 6. Schematic of the receiver.
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~assuming that ‘‘0’’’s and ‘‘1’’’s are equally likely to occur! is
derived in the Appendix and is given by

Pe<
1

2
erfcS DR̂

AN0f B
D ,

e2 (DR̂)2/N0f B

2Ap
,

where f B is the bandwidth of the signal,DR̂ is a noise-
resisting gap of the received chaotic attractor~signal!, and
N0 is the noise power spectral density at the receiver input.
Thus the BER becomes very small for (DR̂)2@N0f B . Note
that N0f B represents the effective power of the interfering
signal ~noise!, whereas (DR̂)2 is determined by the relative
size of the noise-resisting gap as well as the overall size of
the chaotic attractor~signal strength or power, speaking in
practical terms! at the receiver input. Therefore, there exist
two ways of improving BER performance: boosting the sig-
nal power, and increasing the relative size of the noise-
resisting gap. A bigger gap requires a more restricted sym-
bolic dynamics; therefore, less data can be sent. While the
output power of TWT is limited by its physical design, the
gap size can be controlled by altering the symbolic
dynamics15 of the TWT, and therefore, offers a rather flexible
means of tuning a chaotic TWT for either better BER perfor-
mance or a higher data rate.

~3! Effect of synchronization on SNR. In our numerical
tests we added to the chaotic signal a filtered low-frequency
Gaussian noise component with a frequency bandwidth of
approximately 1. In this case, the cutoff frequency of the
linear component in our TWT model~see Fig. 1! will lie
beyond the bandwidth of the noise component, and therefore,
the linear low-pass portion of our TWT model will not filter
incoming noise. In this scenario, any improvement in BER
performance must be attributed to the effect of synchroniza-
tion. Numerical simulations show that the SNR after syn-
chronization~SNR at the output of the receiving TWT vs
SNR at the receiving antenna! increases by approximately
11.3 dB.

Another set of numerical simulations showed that the
BER at the output of the synchronized TWT was an order of
magnitude less than that at the input of the receiving TWT
for an input SNR equal to 32 dB. The time series that illus-
trates the effect of synchronization are shown in Fig. 8.

An important issue relevant to the overall performance
of our communication scheme concerns the optimal gap size
DR. As we have shown earlier,DR can be viewed as a
variable that allows one to optimize a given chaotic commu-
nication system for a particular application, or meet certain
design constraints. One such constraint could be a given
threshold for BER. Another constraint could be to maximize
information throughput~data with no errors! of the TWT-
based chaotic communication system. Unfortunately, there is
no clear relation between information throughput and the
size of DR. Although increasingDR greatly improves ro-
bustness to noise, the entropy of the map describing dynam-
ics of the TWT decreases, and the effective data rate in the
communication system also decreases. On the other hand,
the channel coding theorem17 states that there exists an error
control coding algorithm such that the probability of an error
can be made smaller than anye.0 provided that the code
rate is smaller then channel capacityC. In other words, the
channel capacityC determines an upper bound on the
amount of error-free information that can be sent through the
channel. So the answer can be found by looking at the gap
size, bit rate, and SNR in a more general way: the optimum
gap size in this case would simply maximize the channel
capacityC for a given value of the noise power density at the
receiver input.

To summarize the results of this section, we addressed
two key components of communication system design, band-
width efficiency and performance in a noisy environment.
We also identified a mechanism that can be used to optimize
the performance of the proposed communication system.

VII. FUTURE WORK

Summarizing our work, we have developed a model of a
proposed chaotic communication system where controlling
chaos is used as an alternative means of ‘‘modulation’’ for
the encoding of binary information. We have shown using

FIG. 7. Normalized power spectral density of the transmitted signal.

FIG. 8. Time series of an~a! noisy chaotic signal,~b! chaotic signal prior to
adding noise, and~c! the signal filtered by means of chaotic synchronization
~c!. One can clearly see that time series~c! and ~b! look almost indistin-
guishable, even though time series~a! is quite different.
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numerical simulations that, while the proposed communica-
tion system in some aspects behaves as well as conventional
ones, it also offers potentially new benefits.

We believe that our work may be relevant in situations
where the main concern is increase of the compactness and
power efficiency of the amplifier~as, for example, in the case
where the amplifier is on a space satellite!.

While traditional modulation techniques, such as PSK
~phase shift keying! and QAM ~quadrature amplitude
modulation!,17 allow the avoidance of unmodulated spectral
components and, therefore, achieve high power efficiency,
these techniques can only be used with linear TWTs. On the
other hand, TWT’s in general are known to be more power
efficient when operating in the nonlinear regime, when cha-
otic modulation can be utilized.

A qualitative analysis of the chaotic attractor in Fig. 5
reveals that the chaotic flow produced by our model can be
characterized by small relative amplitude variation and the
absence of rapid transitions in phase. As a result, a large
fraction of spectral power is being contained in the periodic
~unmodulated! spectral component. In contrast, conventional
modulation techniques, such as QAM and PSK, are charac-
terized by fast transitions in phase, which allows utilization
of the transmitted energy in a very efficient manner.

We note, however, that the large unmodulated compo-
nent in our numerical example is a characteristic of our par-
ticular example and not of the general proposed method.
Thus it remains a problem for future study to find and char-
acterize chaotic TWT operation that yields chaotic signals
that have a smaller unmodulated component.18

Thus, it is not yet clear whether theoverall performance
of the chaotic satellite communication system that we pro-
pose is better than that of traditionally used ones. A clear
answer to this question awaits experimental implementation
and test of our proposed system.18
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APPENDIX: DERIVATION OF THE UPPER BOUND
FOR BER

Let R̂ be a ‘‘modulated’’ chaotic signalR(t) received by
the second TWT. Clearly,R̂ will be considerably attenuated.
Therefore, the new attractor obtained fromR̂ will be a
scaled-down version of the one in Fig. 5. Sampling the val-
ues of uR̂(tn)u at the surface of section of the new attractor
obtained from the received signal and comparing them to the
value ofR̂ at the middle of its noise resisting gap, one inter-
prets uR̂(tn)u as either a ‘‘0’’ or a ‘‘1.’’ Due to noise in the
channel, some of the bits in the receiver will be read incor-
rectly. We are going now to estimate the fraction of incor-
rectly transmitted bits or BER.

For convenience, in the following, we regard the receiv-
ing TWT as acting like a linear amplifier@i.e., we neglect the
nonlinearity in~2!#. Suppose that white Gaussian noisew(t)

with the power spectral densityN0 /2 is added to the signal at
the receiver input. We model the effect of the slow wave
structure of the receiving TWT as a first-order low-pass filter.
What we sample at the output of the receiving TWT is a true
signal uR̂(tn)u plus y(tn), where y(t)5*2`

` h(t)w(t
2t)dt. For the first-order low-pass filter with cutoff fre-
quencyv0 , h(t)5v0u(t)e2 iv0t, whereu(t) is a step func-
tion. Now we make another assumption; we assume that, in
the absence of noise,uR̂(tn)u5R̂65l6DR̂. In other words,
we assume that the signal is always measured at the edge of
the noise-resisting gap, where the value of the measured sig-
nal is closest to the thresholdl and, thus, errors are the most
likely to occur. Therefore, we are going to estimate an upper
bound for the BER. Since errors occur due toy(t), and since
y(t) is a Gaussian process, we would like to find the vari-
ance ofy(t):

sy
25E@y2#

5v0
2EF E

0

`E
0

`

e2v0t1e2v0t2w~ t2t1!w~ t2t2!dt1 dt2G
5v0

2E
0

`E
0

`

e2v0t1e2v0t2E@w~ t2t1!w~ t2t2!#dt1 dt2

5v0
2E

0

`E
0

`

e2v0t1e2v0t2Rw~ t2t1 ,t2t2!dt1 dt2 .

The autocorrelation function ofw(t) is Rw(t1 ,t2)
5N0 /2d(t12t2), so the integral above becomes

sy
25v0

2E
0

`

e22v0t1 dt15
N0v0

4
.

FIG. 9. Distribution of the signal sampled at the output of the low-pass filter
with the cutoff frequencyv0 .
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Remembering thaty(t) is a Gaussian process, the pdf of
R̂61y(tn) can be expressed as

f R̂6
~y!5

1

ApN0v0/2
expS 2~y1l6DR̂!2

N0v0/2
D

~see Fig. 9!. Here6refers to the condition that a ‘‘1’’ or a
‘‘0’’ was transmitted @R̂11y(tn) or R̂21y(tn) was re-
ceived, respectively#.

For the case of noncoherent detection~when we do not
know at what times the signal needs to be sampled!, the
effective width of a Gaussian becomes twice of that of the
coherent case described above. Therefore,

f
R̂6

noncoh
~y!5

1

ApN0v0

expS 2~y1l6DR̂!2

N0v0
D .

The probability of an event in which the received symbol is
different from what was transmitted is

Pe65E
l

6`

f R̂6
~y!dy

5
1

ApN0v0
E

l

6`

expS 2~y1l6DR̂!2

N0v0
D dy.

Performing integration one gets a rather simple answer:

Pe5Pe65
1

2
erfcSA~DR̂!2

N0v0
D . ~A1!

Equation~A1! gives an upper bound for BER.
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