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We consider wave systems in which rays split on reflection from sharp boundaries. Examples include
the, Schrodinger equation with the potential changing discontinuously across a surface, electromagnetic
waves in a region with a discontinuous dielectric constant, elastic media with a clamped or free bound-

ary, etc. By introducing a Monte Carlo treatment of the rays, it is possible to define chaotic rays via the
standard Lyapunov number criterion. Numerical implementation of the Monte Carlo ray technique is

carried out for the example of elastic media, and is utilized to investigate the extent to which these sys-

tems are globally ergodic. It is suggested that results from previous extensive work on quantum chaos
without ray splitting can be extended to these ray splitting problems. In particular, we indicate a gen-

eralization of the Gutzwiller trace formula to cover ray splitting.

PACS number(s): 05.45.+b

I. INTRODUCTION

Generally, ray equations result from the lowest order
in a formal, asymptotic, short-wavelength expansion of a
wave equation. In the case where the wave equation is
Schrodinger s equation, the ray equations are just the
equations of classical mechanics for particle motion.
More broadly, the ray equations resulting from a wide
class of wave equations (not restricted to quantum-
mechanical wave equations) are Hamiltonian. Since ray
equations are Hamiltonian, they are subject to the famil-
iar generic phenomena of Hamiltonian systems, including
periodic, quasiperiodic, and chaotic behavior. A natural
question to ask is what are the consequences of chaotic
ray trajectories for the solution of the corresponding
wave equation in the semiclassical (i.e., short-wavelength)
regime? The field of study addressing this question has
been called quantum chaos [1,2]. Many interesting
quantum-chaos results have been obtained, and, in partic-
ular, very general statements and techniques have been
formulated concerning both eigenvalue spectra and wave
functions.

The purpose of this paper is to consider extending
these previous results on quantum chaos to a larger class
of wave problems. In particular, we consider problems in
which there are sharp boundaries at which an incident
ray can split into two (or more) rays. Examples of the
type of problem we are considering are shown in Figs.
1(a) and l(b). The situation in Fig. 1(a) arises if we con-
sider the Schrodinger equation with a constant potential
V(x)= V, in region 1 and another constant potential
V(x) = V2 in region 2 with V(x) = + ~ outside regions 1

and 2. Alternatively, one can, for example, also consider
electromagnetic waves with regions 1 and 2 occupied by
homogeneous media of diFerent dielectric constants and
with the outer boundary being a perfectly conducting

surface. As shown in the figure, an incident ray splits,
launching both a transmitted ray and a specularly
reflected ray. Figure 1(b) shows another possible exam-

ple, namely waves propagating in an elastic medium
which is stress free or clamped at the boundary. In this
case the medium supports two wave types, transverse
shear waves (denoted S in the figure) and longitudinal
compressional waves (denoted P in the figure), and these
couple at the boundary. (We assume the S-wave polariza-
tion is in the plane of the figure). (The situations shown
in Fig. 1 may be viewed as generalizations of the (non-
ray-splitting) classical billiard; i.e., the problem of a parti-
cle following a planar trajectory of straight line rays

=0

FIG. 1. Two examples of systems which exhibit ray splitting:
(a) adjoining bounded regions, each supporting one wave type,
or (b) a bounded elastic region.
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bouncing specularly off a closed bounding curve (or
curves}. See, for example, Refs. [3—5]).

The phenomena of ray splitting occurs in these prob-
lems due to the fact that there are regions of the medium
where its properties change over a distance which is
shorter than a wavelength. In particular, the medium
changes abruptly at a discontinuity or a boundary. In
these regions the short-wavelength expansion of the wave
equation breaks down, and the ray may be scattered in a
number of directions. Generally speaking, there will be
some amount of ray splitting whenever the medium is in-
homogeneous. If we consider the problem posed in Fig.
1(a} and imagine that there is a transition layer of thick-
ness 5 separating region 1 from region 2, then the rela-
tive amplitudes of the transmitted and scattered rays will

depend on the thickness of the transition layer. If the
layer is much thicker than a wavelength k, then almost
all of the wave density will be transmitted from region 1

to region 2. This is the usual short-wavelength limit.
The amount of reflected wave density in this case is ex-
ponentially small in the factor b, /A, . If the transition lay-
er is comparable to, or smaller than, a wavelength (the
case considered in this paper), then the reflected and
transmitted wave densities wi11 be comparable. Thus, by
studying ray splitting, we examine a phenomenon which
is present when the conditions for the usual short-
wavelength approximation are not satisfied.

In classical Hamiltonian (without ray splitting) prob-
lems there are cases where the rays are chaotic and er-
godic over the entire energy surface (e.g. , the Sinai bil-
liard and the stadium billiard). There are also cases
where there is complete integrability, and there are cases
where there is a mixture of chaos and integrability. The
latter are very common. Furthermore, analysis of the
semiclassical limit of cases with a mixture of integrable
and chaotic regions has proven to be much more prob-
lematical and tentative than analysis of the two extreme
cases of completely integrable or completely chaotic sys-
tems. In this regard, intuition might suggest that ray
splitting would lead ergodicity to be much more pre-
valent. [Indeed, the usual concept of Kolmogorov-
Arnold-Moser (KAM) tori is absent for orbits that ex-
perience ray splitting. ] Hence, one might suppose that
extensions of results of completely chaotic systems
without ray splitting might apply to a much broader
range of geometrical configurations with ray splitting.
This is one of the prime motivations of our work. Our re-
sults generally support the above intuition, but we also
find some effects that mitigate ergodicity.

We believe that the much greater tendency for ergodi-
city and positive Lyapunov exponents for cases with ray
splitting implies, for example, that an approximate
Wigner distribution of energy-level spacings (e.g. , see
Refs. [1] and [2]}should apply in a much wider variety of
geometrical configurations than would be the case
without ray splitting.

In Sec. II we briefly review material on the classical or-
bits in a singly connected billiard domain. Section III
discusses the elastic medium billiard [Fig. 1(b)], which is
then used as a numerical example in Sec. III. In particu-
lar, in Sec. III we introduce a Monte Carlo treatment of

the ray-splitting problem as a means of defining chaos
and examining the tendency for ray ergodicity in such
problems. It is found that there are two sources inhibit-
ing ergodicity in the elastic medium billiard problem: (i)
critical reflection, and (ii) slow mode conversion for
periodic orbits that make only nearly normal reflections.
In Sec. IV we discuss situations other than the elastic
medium problem (i.e., acoustic and electromagnetic
waves) and argue that phenomena analogous to (ii) do not
occur in these cases. In Sec. V we generalize the
Gutzwiller [6] trace formula to problems with ray split-
ting. As in the previous work we find that closed orbits
are the key. With ray splitting, however, one has to
adopt a slightly expanded concept of what we mean by a
closed orbit. Section VI presents a concluding discussion.

II. BRIEF OVERVIE%
OF THE BILLIARD PROBLEM

where o
„

is the arclength on the boundary (assumed to
be a single connected curve) to the nth bounce point,
measured from some fixed reference position, and ~„is
the cosine of the nth bounce angle. (Again see Fig. 2.)

We take cr to be normalized such that o =1 corresponds
to the full length of the bounding curve. The coordinates
of successive bounces are related by the "bounce map-
ping" M such that

+n+1

n+1
(2)

FIG. 2. The classical billiard problem: a ray or point particle
bounces about inside a closed curve which lies in a plane. We

specify the position of a particular reAection in terms of arc-

length o. from some point Po normalized so that o.=1 for a
complete circuit, and the angle a of the ray with respect to the
tangent to the bounding curve (the "bounce angle" ).

We begin with a brief overview of the classical "bil-
liard" problem. As indicated previously, this is the prob-
lem of a ray or point particle bouncing about inside a
closed curve which lies in a plane. The bounce, or
reflection, is energy conserving, and governed by the law,
"angle of incidence equals angle of reflection. " (See Fig.
2.).

Since the particle travels in a straight line between
reflections, its path, or "orbit, " is entirely characterized
by specifying the positions and incident angles of the
reflections (Fig. 2). An orbit is thus specified by the se-
quence

r
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where M is a nonlinear mapping which may be shown to
be area preserving [3—5].

For certain shapes of the bonding curve, the equations
of motion of the system are completely integrable. As a
result there exists a global analytic constant of the
motion F(o, r) which is conserved along any orbit of the
map. Consequently, the successive bounces are restricted
to lie on a curve in the (o, r) surface of section. For an
integrable system, every point in the phase space lies on
such an invariant curve. When the system in nonintegr-
able, no such global constant of the motion exists and the
successive bounces chaotically fill an area in the (o,r)
space. For p$eudointegrable systems, constants of the
motion exist for some initial conditions, but not for oth-
ers. For such systems, the phase space consists of a mix-
ture of invariant curves and chaotic areas.

As an example, the circular billiard (that is, the billiard
which has a circle as its boundary curve) is an integrable
system. Its (o, r) phase space consists entirely of closed
orbits and invariant curves characterized by ~=const.
(In this case the constant of the motion is angular
momentum. ) On the other hand, the phase space of the
so-called "stadium" billiard, consisting of two equal-
radius semicircles connected by straight lines, is entirely
chaotic. The entire phase space of the stadium billiard is
densely covered by an orbit originating from a typical ini-
tial condition.

A class of billiards which varies smoothly from circle
to stadium was studied by Benettin and Strelcyn [4]. This
oval is illustrated in Fig. 3. It is composed of four circu-
lar arcs meeting with continuous slope on the vertices of
a square of sidelength two. Opposing arcs have the same
radius of curvature. If 5 is the offset of the center of cur-
vature of one of the arcs from the square side wall, then
the two radii of curvature are related by

R, /Ri=5 .

For 5=0, the oval becomes a stadium; for 5=1, a circle.
For this oval with 1)5)0, Benettin and Strelcyn ob-
served coexistence of invariant curves and chaotic re-
gions as in other examples of chaotic transition. Figures
4(a) and 4(b) are examples of the phase space of the
Benettin-Strelcyn oval, at 5=0.76, showing a chaotic re-
gion [Fig. 4(a)] and some invariant curves resulting from
seven (numbered) different integrable orbits [Fig. 4(b)].

If the boundary curve of the billiard has no inAections,
it can be parameterized by the angle 4 of the counter-
clockwise pointing tangent, measured with respect to a
fixed axis (see Fig. 5) and the radius of curvature of the
boundary curve at 4' denoted R ('p). Then

r,
FIG. 3. The Benettin-Strelcyn oval. Pl, P2, P3, and P4 are

points on the vertices of a square of side two. I &, I 2, I 3, and I 4

are circular arcs with common tangents at P&, P2, P3, and P4.
The length 5 is measured from the center of I ~ to the side Pl P2.
For 5= 1, the oval is a circle; for 5=0, a stadium.

o (4)= f 1%"R(4') .
n/2

In terms of 4 and a (the bounce angle defined in Fig. 2)
the mapping equations can be written as

+n+i +n+i —1f R (%)sin% 14 f R (%)cos%1%
n

(4)

=t a(n%'„+a„) (5)

and

+n+] &n+] +n +&n ~ (6)

5an+1
B(Tn

~+n +1
Bo'

„

n+1

~&n

has determinant one,

det(m)=1 .

Thus we obtain an implicit map of (%„,a„}to
(4„+„a„+,) in terms of the single geometrical quantity
R(%) in Eq. (3). Note that Eq. (5}, in general, has to be
solved numerically for 4„+,. Having found 4„+,and

a„+„we can determine cr„+&
[from Eq. (4)] and

r„+,=cos(a„+,). Due to the choice of arclength o and
cosine of the bounce angle ~ as variables, the mapping is
area preserving; i.e., the Jacobian matrix

T

R(%)=
d%

That is,

(3)
In the notation of Eqs. (2)—(6), the Jacobian matrix m of
the mapping is given by [5]

n Pn, n+]
s„+,R (4„)Sn+]

Pn n+] Sn+] $„
R(%„)R(4„+( R(%„) R(%„+))

Pn, n+]
SnSn+]

Sn +1 Pn, n +1

s„s„R(%„+,)

(7)
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FIG. 4. (a) An example of the
phase space of the Benettin-
Strelcyn oval at 5=0.76: One of
the chaotic regions. (bj An ex-

ample of the phase space of the
Benet tin-Strelcyn oval at
6 =0.76: Seven of the invariant
curves are labeled with the
numerals l —7.
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where p„„+,is the direct distance (not arclength) from
the nth to the (n + 1)th bounce, and s„=sin(a„).

time, A, and p are the Lame constants of the elastic ma-
terial, and p is its mass density. If the displacement is ex-
pressed as the sum of two parts, due, respectively, to a
scalar and a vector potential,

III. THE ELASTIC MEDIA PROBLEM
AS A "BILLIARD"

A. The governing equations

u =V/,

u, =VX+,
(9a)

(9b)

In order to study the behavior of coupled-wave sys-
tems, we consider as an example a bounded two-
dimensional elastic region. This problem is analogous to
the conventional billiard problem in that it can be treated
as a ray tracing problem in the classical {i.e., short-
wavelength) limit; ho~ever, the medium supports two
distinct natural waves, which are coupled at the boun-
daries. The following is a brief summary of the equations
governing the elastic medium problem.

Infinitesimal displacements in the elastic region are
governed by the Navier equation,

pV u+(X+p)VV u=pii,

where u is the infinitesimal displacement of the volume
element, the dot represents diAerentiation with respect to

FIG. 5. A convenient coordinate system for computer itera-
tion of the classical billiard problem for a bounding curve: g is
the angle of the counterclockwise pointing tangent, and a is the
bounce angle.
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the differential equation [Eq. (8)] separates into two
second-order equations, viz. ,

(10a)

p2+ — jp
C2

(lob)

t=O on Q, (12)

where 0 is the bounding surface, and t is the traction on
0, given by

where c~ = (y+2p, )/p and c, =p/p. Let ~ be the ratio of
the wave speeds

~=c /c, =[(A,+2@)/p]'~

The elastic medium thus has two distinct natural waves,
sometimes known as P [Eq. (10a)] and S [Eq. (10b)]
waves, which are uncoupled except at the boundaries of
the medium. The P waves are compressional waves such
that planar P waves have displacements parallel to the
wave vector [Eq. (9a)]. The S waves are shear waves such
that planar S waves have displacements perpendicular to
the wave vector [Eq. (9b)]. (Thus S waves possess polar-
ization properties. )

The solution of Eq. (8) is a superposition of S and P
waves, which are coupled by the boundaries of the elastic
medium. If there are no forces on the boundary, the
boundary condition becomes

cos(a~ )=~ cos(as ), (15}

where a~ and as are the ray angles for the P and S
waves, respectively. (Note that there is a critical angle
given by as =arccos(l~ ') below which no S to P conver-
sion occurs. )

(b) Defining power flux reflection coefficients as the ra-
tio of the normal component of energy flux in the
reflected wave to that in the incident wave, the reflection
coefficients for P wave incidence are given by

sin2apsin2as —K cos 2as
App— (16)

sin2a&sin2as+K cos 2as

For reflection of a plane wave propagating in an elastic
medium from a planar stress-free boundary (Fig. 6), one
Ands that the coupling of S and P waves depends upon
the polarization of the S wave. In particular, S waves po-
larized such that the displacements lie in the plane
defined by the wave vector and its projection on the
boundary (sometimes designated SV waves) are coupled
to P waves. In contrast, S waves of the other polarization
(i.e., displacements normal to the plane of Fig. 6) are not
coupled to P waves. (These waves are commonly desig-
nated SH waves. ) For the SV and P waves the following
results obtained from Eqs. (13) and (14) apply:

(a) The angle of propagation with respect to a tangent
to the boundary for a mode-converted reflected wave (ei-
ther P to S to S to P) is related to that for the incident
wave by

t=n T. (13) (17)

Here n is a unit vector normal to 0 and T is the stress
tensor

T=AI(V.u)+p(Vu +Vu),

where I is the identity tensor.

(14)

B. The classical (zero-wavelength) limit

In the small-wavelength limit the problem can be treat-
ed as a ray tracing problem. If the curvature of the
boundary can be neglected relative to the wavelength,
reflection can be treated locally as reflection at a plane
boundary. Upon reflection, a ray is split into an S and a
P ray.

~s~ =
&
—~ss (19)

where Asz and Ass represent the power flux reflection
coefficients for the case of a reflected P and S wave, re-
spectively, given S wave incidence. Equations (17) and
(19) are statements of energy conservation.

where A+z and Aps represent the power flux reflection
coefficients for the case of a reflected P and S wave, re-
spectively, given P wave incidence.

(c}The power flux reflection coefficients for S wave in-
cidence are given by

'

sin2assin2ap K cos 2as
~ss

sin2assin2az+K cos 2as

IV. NUMERICAL RESULTS
IN THE CLASSICAL LIMIT

FIG. 6. ReAection of a plane wave propagating in an elastic
medium at a boundary. An incident P wave is split into an S
wave and a P wave.

In this section, we investigate numerically the proper-
ties of solutions of the two-wave elastic-medium billiard
with displacements in the plane of the billiard [Fig. 1(b)].
To obtain these results we employ the following algo-
rithm:

We follow a ray traveling in a plane in the elastic re-
gion through many reflections. Ray splitting is treated
by a Monte Carlo approach. That is, at each reflection
only one ray is assumed to be emitted, and that ray is tak-
en to be P or S with relative probability given by the ap-
propriate term in the energy equations, Eqs. (16)—(19}
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(i.e., either A~&, A~s, Ass, or As&). If the reflected and
incident waves are of the same type, then the angles of in-
cidence and reflection are equal. If not, then the angles
are related by Eq. (15).

In principle, one should allow for the generation of two
reflected rays at each encounter of the boundary. Fur-
ther, one should associate with each "daughter" ray an
amplitude which decreases on reflection by the appropri-
ate factor given by Eqs. (16)—(19). This procedure, how-
ever, would quickly lead to an unmanageably large num-
ber of "daughter" rays. %'e have, instead, followed the
above described Monte Carlo method where only one ray
is traced. %'e argue that after a large number of bounces
the fraction of time the single Monte Carlo ray spreads in
a given region of phase space in a given wave type ap-
proaches the value that would be obtained by the aggre-
gate of all "daughter" rays had they been followed. The
integrated phase-space density determined from the sin-
gle ray might then be argued to be directly related to the
energy density of a short-wavelength eigenfunction of the
time harmonic problem.

Due to relation (15), the bounce mapping for the case
with ray splitting contains an additional operator T such
that the X-bounce mapping has the form

For no transition

1 0
T„(notransition )= 'O (21c)

The probability that T„hasa particular form depends on
the bounce angle a„via the power flux reflection
coe+c ents A pp A ps Ass and Asp. The resulting nu-
merical model reduces to the conventional billiard prob-
lem if ray splitting at the boundaries is turned off.

One might note that, given an odd number of transi-
tions, the X-bounce mapping with ray splitting is not area
preserving. As we shall see, however, we are only in-
terested in cases for which an orbit ends in the same (ei-
ther S or P) wave type as that in which it began. For this
case (MT) is area preserving.

In addition to tracing the ray, in each case we calculat-
ed the Lyapunov numbers of the orbit. These were ap-
proximated by calculating the Nth root of the magnitude
of the eigenvalues of the Jacobian of the X-bounce map-
ping for large X. The Jacobian of the X-bounce mapping
is calculated by taking the products of the Jacobians of
the individual bounce mappings. If the Monte Carlo ray
orbit is ergodic over an area and has a Lyapunov number
greater than one, then we call the ray orbit chaotic.

(MT) =M, T,M—2T2M3T3 MQT~ . (20)
A. A two-wave Benettin-Strelcyn oval

(21a)

For a P to S transition,

1 0
T„(P~S)='O (21b)

If there is an S to P transition at the nth reflection, T„
has the form As one numerical example, we consider a two-

dimensional elastic region analogous to the generalized
stadium of Benettin and Strelcyn [4], which was de-
scribed in Sec. II. Numerical experiments were per-
formed for this geometry with and without ray splitting.
The Monte Carlo approach described previously was tak-
en to model the ray splitting. As described in Sec. III,
the reflection at a plane stress-free boundary depends on
the ratio of wave speeds K =cz /cz. %e choose for our
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FIG. 7. The phase space for the stadium with ray splitting. The S-wave and the P-wave phase space are shown side by side. Since
the results are symmetric about o.=0.5 only half of each space is plotted.
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TABLE I. Number of iterates in cells of the P-wave phase space of the stadium.

0-0. 1 0. 1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

0.8—1.0
0.6—0.8
0.4—0.6
0.2 —0.4

0—0.2
( —0.2)—0
(
—0.4)-(—0.2)

(
—0.6)—( —0.4)

( —0.8)—( —0.6)
( —1.0)-(—0.8)

4313
4437
4332
4277
4315
4071
4231
4126
4243
4108

4171
4135
4025
4161
4147
4156
4196
4196
4169
4184

4146
4164
4233
4049
4025
4013
4180
4038
4145
4183

4097
4182
4170
3974
4059
4056
4225
4162
4129
4086

3995
4145
4104
4264
4136
4062
4062
4132
4196
4145

4051
4216
4197
4106
4161
4110
4125
4213
4073
4036

4108
4216
4049
4126
4071
4123
4102
4224
4173
4081

4146
4005
4060
4098
4031
4003
4042
4005
4095
4148

4161
4150
4017
4151
4215
4146
4091
4157
4205
4204

4098
4179
4031
3955
4013
4193
4188
4147
4079
4160

numerical studies the value

~=1.429 .
This value gives a critical angle for incident S waves of

as. =~/'4

which results in comparable ranges of angle where an in-
cident S wave is totally reflected and where an incident S
wave experiences ray splitting. In the plots and tables
that follow, the phase space is parameterized in terms of
0., the normalized arclength, and ~, the cosine of the
bounce angle, as defined in Fig. 2.

For 5=0, the Benettin-Strelcyn oval is a stadium. Fig-
ure 7 shows the phase space for the stadium with ray
splitting. 1000 iterates of a single orbit are plotted. (We
have plotted only points with values e ~ 0.5, since the re-
sults are symmetric about cr =0.5.) Reflections which re-
sulted in a P wave are plotted on the left: those which re-
sulted in an S wave are plotted on the right. As in the
case without ray splitting, this oval is filled by a single
chaotic orbit. The distribution of the iterates appears to
be uniform.

In order to quantify the apparent ergodicity, the phase
space was divided by a 10X 10 grid into 100 regions. For
an orbit with 10 bounces, the number of iterates falling
into each rectangle of the grid is tabulated in Tables I and

II. The density of iterates is approximately uniform
throughout each of the S and P spaces. The standard de-
viation of the number of iterates per cell was 82.9 and
110.1, for the P and S phase spaces, respectively, with an
average number of points per cell of 4133 and 5867, re-
spectively.

These standard deviations are somewhat larger than
the values (4133)' =64 for P space and (5867)' =76
for S space, which one would expect if the distribution
were due to an uncorrelated Gaussian random process.
These larger values of the standard deviation can be attri-
buted to long-term correlations in certain portions of the
orbit. In particular, it has been shown for a similar
geometry which also contains opposing parallel sides [7]
that the long-term correlation function of the orbit falls
o6'like 1/T, rather than exponentially. These long-term
correlations are due to the existence of a family of neu-
trally stable orbits (the two-bounce orbits between oppos-
ing straight sides).

The numerical ratio of the number of points in S to P
space is 5867 —:4133=1.420. The theoretically expected
average ratio is given by a =cp/cs 1.429. This is
shown in the Appendix.

As 5 increases, the phase space of the Benettin-Strelcyn
oval without ray splitting shows increasing numbers of
invariant curves. For 5(6,=0.76 there is a single con-

TABLE II. Number of iterates in cells of the S-wave phase space of the stadium.

0-0. 1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

0.8—1.0
0.6—0.8
0.4—0.6
0.2—0.4

0—0.2
( —0.2)—0
( —0-4)—( —0.2)
( —0.6)—( —0.4)
( —o.8)—( —0.6)
( —1.0)—( —0.8)

5766
5934
5929
5735
5846
6021
5865
5944
6017
5819

5832
5989
5930
5717
5679
5643
5913
5859
5837
5931

6079
6059
5889
5780
5625
5608
5789
5904
5904
5971

5878
5818
5925
5831
5749
5841
5904
5806
5923
5717

5919
5848
5864
5814
5919
5980
5899
5883
5857
5676

5855
5805
5903
5874
5936
6034
5905
5921
5912
5700

5838
5875
5900
5897
5617
5766
5933
5883
5935
5713

6011
5957
6022
5977
5646
5562
5794
5932
5955
5890

5907
5954
6005
5847
5637
5737
5953
5967
5975
5945

5749
6032
5957
5946
5972
5794
5748
5963
5901
5812
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FIG. 9. Four-bounce periodic orbit in the Benettin-Strelcyn
oval.

FIG. 8. Two-bounce periodic orbit in the Bennettin-Strelcyn
oval.

0.75

00

(see Fig. 8). These orbits acquire special significance in
the case when ray splitting is allowed, as we shall see.

nected ergodic chaotic component which connects the
line ~=0 and the line ~=1. As 5 is increased to 5, a
KAM surface appears which runs horizontally from
o. =0 to 1, thus dividing the large connected, ergodic,
chaotic component mentioned above into two com-
ponents. Figure 4(a) shows one of these components (the
one which includes the line v= 1) for 5=0.76. [Since
only 10 iterates were used, the orbit plotted in Fig. 4(a)
did not reach the largest ~ values which are part of the
same chaotic region. ] Regions encircled by KAM curves
are visible as holes in the chaotic regions.

Figure 4(b) shows some of the invariant tori of this bil-
liard with numbers labeling the seven invariant tori,
again for the case where ray splitting is absent. The tori
in the lower part of the figure, r~ (0.5, are part of a fam-
ily of invariant curves which surround the stable two-
bounce orbit defined by

0.25 o 2

Other families of invariant curves are visible as holes in
the chaotic region in Fig. 4(a). For example, the regions
marked A correspond to invariant curves surrounding
the stable four-bounce orbit shown in Fig. 9.

Figure 10 shows the S and P phase spaces for the same
oval (5=0.76) when ray splitting is allowed at the
boundary. The phase spaces of the S and P waves are
displayed side by side. The ray splitting has destroyed
most of the invariant tori. An initial condition which lies
on an invariant curve of the billiard without ray splitting
converts energy into other paths and becomes ergodic.

However, two remnants of the KAM surfaces remain.
First, ray splitting does not affect those invariant curves
in the S space which fall entirely in the region for which
r) r, —:cos(a, ), where a, is the critical angle below
which no S to P conversion occurs. This is demonstrated
in Fig. 11. Refer to Fig. 4(b), which shows phase-space
plots of seven orbits (each with 500 refiections) which are
integrable in the absence of ray splitting. The invariant
curves are marked with orbit numbers on the plot. Fig-
ures 11(a) and 11(b) show the phase-space plots of orbits
using the same initial conditions as for orbits 1 and 2 of
Fig. 4(b) when ray splitting is allowed. 3000 refiections
and 1000 rejections, respectively, are plotted. For these
plots the cosine of the critical angle is v, =0.6998. Orbits
1 and 2 include values of ~ (~, and become ergodic over
the same area when ray splitting is present. On the other
hand, when the ray splitting calculation is done for orbit
3, which lies entirely above ~=~„the non-ray-splitting
result of Fig. 4(b) is reproduced. This elfect is also
demonstrated by the calculated Lyapunov numbers.
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oval with ray splitting at
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the chaotic region. However, as our analysis below will

show, escape from this region is extremely slow (in par-
ticular, it is much slower than exponential). This pseu-
dostability may be understood as follows: Snell's law for
ray splitting is given by Eq. (15),

Cg
cos(as)= cos(ap) .

Cp

Thus, near the two-bounce orbits, where a is close to
~/2, the reAection angle change due to ray splitting is
small. Furthermore, the probability of transition goes to
zero as a approaches n/2. [See Eqs. (16) and (18).] Thus
the orbit tends to remain on an invariant curve of the
problem without ray splitting for many bounces before
making a transition. Following a transition, the angle o.'

will still be small [cf. Eq. (15)], and hence the orbit again
moves on an invariant curve of the one-wave system for
many bounces.

Table III tabulates the Lyapunov numbers of the seven
orbits plotted in Fig. 4(b). 3000 reflections were con-
sidered in each case. Results are shown both with and
without ray splitting for four different values of 7 —K

For the smaller ~, values more orbits lie entirely above
~„and thus remain integrable in the presence of ray
splitting. The change from integrability to chaos due to
the ray splitting is demonstrated by the increase in the
Lyapunov numbers. All the orbits in the table which in-
clude values of ~&~, become chaotic in the presence of
ray splitting. All the tabulated orbits which lie entirely in
the region ~) ~, remain integrable despite ray splitting.

A second remnant of the KAM surfaces lies in the
small-~ regions of the phase space and is clearly seen in
Fig. 11(a). That part of phase space, which contains the
invariant curves surrounding the stable two-bounce or-
bits for the case without ray splitting, has become part of

Fpo. ]. ].. (a) Orbit resulting from the same initial conditions as orbit 1 of Fig. 4(b) when ray splitting is present. The dot size is

smaller in the region near the straight-back-and-forth orbit (~=0, o.=0.25). (b) Orbit resulting from the same initial conditions as

orbit 2 of Fig. 4(b) when ray splitting is present.
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TABLE III. Lyapunov numbers with and without ray splitting. The asterisk indicates that this ini-

tial condition lies in the same large ergodic component as orbits 2, 4, 5, 6, and 7, and should thus have

the same Lyapunov number as those orbits. The larger deviation of this value from that of the other

chaotic orbits is due to the fact that this orbit started in the pseudostable region and spent over half of
the 1000 iterates used for calculating the Lyapunov numbers in the pseudostable region. When the

same orbit is continued for 20000 bounces, the Lyapunov number is calculated to be 1.20.

Ray splitting

Orbit No ray splitting

1.00
1.00
1.00
1.00
1.00
1.00
1.00

r, =0.70

1.08*
1.21
1.00
1 ~ 25
1.22
1.21
1.24

r, =0.64

1.25
1.31
1.00
1.25
1.29
1.19
1.24

r, =0.61

1.21
1.00
1.00
1.00
1.30
1.23
1.29

r, =0.54

1.32
1.00
1.00
1.00
1.00
1.19
1.28

B. Analysis of pseudostable orbits

The pseudostable orbits near the stable two-bounce or-
bits can be understood in terms of the focusing and de-
focusing effect of opposing curved reflectors. If we con-
sider a ray bouncing back and forth in a plane between
opposing mirrors which are spherical segments, allowing
wave-type conversion at the mirrors, we can determine
the rate at which the ray diverges from near-normal in-
cidence. In what follows, we show that this divergence is
much slower than for the case of an exponentially unsta-
ble periodic orbit.

Consider a pair of opposing curved mirrors which are
spherical segments. (See Fig. 12.) For simplicity, let the
radii of curvature of both mirrors have the same value

R, . Let the centers of curvature lie on the same axis. Let
the distance between the mirrors on the axis be 1, and as-
sume for convenience in describing the system that the
axis lies on the horizontal.

Consider a ray being reflected back and forth between
the mirrors at near-normal incidence, in the plane of Fig.
12. Let g„bethe (small) angle the ray makes with the
horizontal after the nth bounce. Let g„bethe vertical

and

cosa;„,=k„cosa„f (22)

if a P wave is incident

and an S wave is reflected

1/v if an S wave is incidentk„='
and a P wave is reflected

1 if incident and reflected

wave types are the same .

(23)

Then, for small (g, g), the coordinates of successive
reflections are related by

4. +i
~ C

kn + I

1

—(1+k„)e k„—e(1+k„) (24)

distance of the nth bounce point from the axis.
Let the medium between the mirrors support two wave

types S and P with different velocities c& and cz, and let
K =cg /cp. Assume that wave-type conversion can occur
at either mirror and that the angles of the incident and
reflected ways with respect to the tangent are related by

axis
(horizontal)

where a= 1/R, . We assume ~1
—

e~ ( 1 so that the prob-
lem without ray splitting (i.e., k„:—1) results in the
periodic orbit bouncing directly back and forth along the
horizontal being stable to small perturbations.

By defining a new variable

P„=— . [g„+(1—cos0)g„],1

sinO

where cos8= 1 —e, we can rewrite Eq. (24) in the form

FIG. 12. A pair of opposing curved mirrors which are circu-

lar arcs. The separation of the mirrors on the axis is one. The

reflection point of a ray is parameterized in terms of the vertical

distance from the axis and the angle with respect to the horizon-

tal.

kn +1
C

p. +i

cosg siilg kn

k„sinO k„cosO P„ (26)

Thus, if k„=1, (g„+&,p„+,) is simply a rotation through
an angle 0 of (g„,p„).We are led by this to define new
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variables r„andP„such that

g„=r„cosP„,
P„=r„sing„. (27)

counting for the variation of the transition probabilities
with r. The preceding is modeled by the equation

dr 3=dr lnq,
dt's

Thus, in the absence of wave-type transitions, r„doesnot
change and (g„,P„)lies on the circle of radius r„.

Then the map describing the evolution of r„andP„is

where n
' = ( Ar ). We thus obtain for r(n)

r (n)=r (0)[1—2Anr (0}lnq]

r„+,=r„[cos(8+/„)+k„sin(8+/„)]'~
tang„+,=k„tan(8+tI}„).

(2&)

for 2Anr lnq (1. Alternatively, we can calculate the
number of iterations N necessary for r(n) to reach a
specific value rf,

We note that r„+=tr„and ((}„+,=P„+8if there is no
wave-type transition (k„=1). In other words, we have

r„+, 1+k„tan(P„+8)
1+tan (P„+8) (29)

Since the angle of incidence is small, the probability of
a wave-type transition is also small [see Eq. (19)]. Thus
the ray will experience many reflections before undergo-
ing a wave-type transition. A pair of transitions (that is,
a change from one wave type to the other, and, after
many bounces, a transition back to the original wave
type) will result in a change in r given by

rbefore

rafter

1+a. tan (P +8)
1+tan (P +8)
I+(I/a. )tan (Pz+8)

X
1+tan (/k+8)

(30)

d8& d0p 1 +K tan g&
q —=

1+tan 8)

X
1+(1/v )tan 82

1+tan 82

where P& and Pk are the values of P at the transitions.
Since the transitions are infrequent and the angle P„in-
creases by 0 at each reflection, we can consider the values
of PJ and (t k to be random, uncorrelated, and uniformly
distributed on the interval [0,2~]. Thus the expected
value of the ratio (30) is

1 1

2A lnq r(0)~
1

—2

Thus the number of iterations diverges as r(0) as op-
posed to ln[r(0) '] in the case of exponential growth. In
this respect the growth of r is slower than exponential.

C. Example of a billiard without stable
two-bounce periodic orbits

We are led by the above results to look at geometries
which have no stable two-bounce orbits in the one-wave
case. Such configurations will not have the pseudostable
orbits of the ray-splitting problem discussed in the previ-
ous section.

The stability conditions for the two-bounce periodic
orbits in situations without ray splitting can be derived as
follows: As described earlier for a two-bounce closed or-
bit, the deviation of o. and ~ from their initial values after
two bounces is given by

5o2 5o.o

For a normally incident two-bounce orbit between boun-
daries with radii of curvature R, and R 2, m ' ' is given by

The deviations 5o 2 and 5' remain bounded as the num-
ber of cycles goes to infinity if the trace of the two-
bounce Jacobian matrix m' ' satisfies

1 (1+a. )

4
(31)

—1+ P
R2

We are interested in estimating the rate at which r„/ro
grows with n. To this end we consider the following.
Suppose the probability of a transition on any particular
bounce were a constant, i.e., independent of r„and P„.
We would then expect r to increase by some factor q in a
time equal to the expected time n between a pair of tran-
sitions. This would give rise to exponential growth of the
expected value of r, which we call r, r 'dr/dn =(lnq)/n.
However, the probability of a transition (i.e., n ) is not
constant but depends on r„and P„and, in particular, is
proportional to r„.Thus a rigorous statistical treatment
of the problem would be somewhat complicated. As a
heuristic model, we suppose that r increases by a factor q
in a time the length of which depends inversely on r ac-

—p 1 1

R)Rq R) R~

X ' —p 1 1

R)R2 R) R2
—1+ p

R2

(Trm' '~=2 2 1—
R)

—1 (2
R2

where p is the travel distance between bounces. Then

(32)

(33}
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FIG. 14. Phase-space plot of
a chaotic orbit of the tricloid
without ray splitting for y=0. 6,
R

&

= 1, and R2 =3.0026. For
these parameters the tricloid has
a stable two-bounce orbit.
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bounce orbits has resulted in more rapid diffusion
throughout the phase space (except for orbits lying above

r, ), with the result that a 10 -reflection orbit originating
in the pseudostable region is approximately ergodic.
With the exception of the S space above v.

„

this orbit ex-

plores the entire phase space approximately uniformly,
including the areas occupied by KAM surfaces of the
one-wave system, for example, the integrable regions due
to the three-bounce orbits, marked A in Fig. 17. The
Lyapunov number for the orbit plotted in Fig. 18 and
tabulated in Tables VI and VII was calculated to be
3.07) 1.

D. Discussion of ergodicity in other cases

We have found that ergodicity is inhibited for those
rays which do not experience splitting. In particular, for
our elastic medium problem, there were two cases where
rays do not split, namely, when the angle of incidence
was greater than the critical angle for the S wave, and
when the ray was always normally incident (the two-
bounce orbit).

The experience we have gained in the elastic medium
problem is useful for other cases. As an example, we dis-
cuss the case shown in Fig. 1(a). In that case, the media
in regions 1 and 2 are assumed to support only one type
of propagating wave. For the case, say, of acoustic
waves, there is no analogy to the two-bounce orbit of the
elastic medium because, aside from the case of critical
reAection, incident waves are split by transmission and
reAection. Thus, for waves interacting with the bound-
ary, the only source of nonergodicity is critical reQection
from the side with the smaller sound speed. One might
envision that a situation analogous to the direct two-
bounce orbit might arise for the case where the wave be-
ing described is an electromagnetic wave with its electric
field in the plane of the figure. (We imagine regions 1 and
2 as being occupied by media of different dielectric con-
stant. ) In this case, a ray incident at Brewster's angle is
not split (it is completely transmitted). If the ray also hits
the conducting walls at normal incidence (Fig. 19), then
we have a two-bounce orbit without ray splitting. We
note, however, that this is a nongeneric situations. This
is, only very specially chosen shapes allow such orbits,

1.0- P WAVE SV WAVE

0.8

0.6

0.4

0.2

FIG. 15. Orbit resulting from
the same initial conditions as
those in Fig. 14 when ray split-
ting is present. 10 iterates are
plotted.
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FIG 16 Same orbit as that of
Fig. 15. Only 10' iterates are
plotted.
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and a small change of the wall shape in Fig. 19 eliminates
the possibility of this type of orbit. Thus we again find
that critical reflection is the only effect likely to spoil er-
godicity for rays which interact with the boundary be-
tween regions 1 and 2.

V. TRACE FORMULA FOR CHAOTIC BILLIARDS
%'ITH RAY SPLITTING

In the preceding we have been addressing the questions
of ergodicity and chaos using our Monte Carlo ray algo-
rithm. In particular, we found Lyapunov numbers
greater than one when the Monte Carlo ray fills an area
in the ~-0. surface of section, and we called this condition
chaos. %e believe that this chaos in the Monte Carlo ray
picture is analogous to the chaos that occurs in situations
without ray splitting (i.e., ordinary billiards) and that re-
sults already developed in the field of quantum chaos
(without ray splitting) can be straightforwardly general-
ized to the ray-splitting case. As an example, we indicate
the generalization of the Gutzwiller periodic-orbit sum
trace formula [6] to include ray splitting. Since the
derivation [8] closely parallels Gutzwiller's analysis we

shall not give it here; rather, we just report the result and
its interpretation.

The "standard" Gutzwiller trace formula [1,6] gives an
asymptotic (one hopes) approximation to the oscillatory
contribution to the density of states for the Schrodinger
wave equation in terms of a summation over classical
periodic orbits. If D(E) denotes the exact density of
states as a function of the energy F., then the oscillatory
contribution d (E) is given by d(E) =D(E) D(E), wh—ere
D(E) is the Thomas-Fermi expression for the smoothed
density of states. The Gutzwiller formula for d(E) also
has an additional smoothing aspect in that what the
asymptotic periodic-orbit sum formula actually yields is
d (E) smoothed on some scale [smaller than the scale that
produces D(E)]. The scale of the smoothing for d(E) is
set by choosing a cutoff of the periodic-orbit sum; as
higher-period periodic orbits are included the smoothing
scale becomes finer (but since the sum is asymptotic, one
presumably cannot include too many periodic orbits).
Recently this approach has been improved upon to ob-
tain actual individual eigenvalues in the semiclassical re-
gime.

Our result involves a summation over closed orbits of
the ray splitting problem. %e illustrate several such
closed orbits in Fig. 20 for the case of the two-region bil-
liard shown in Fig. 1(a). For specificity, consider the case

TABLE IV. Number of iterates in cells of the P-wave phase space for the tricloid with a stable two-bounce orbit.

o. 0-0. 1 0. 1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

0.8 —1.0
0.6—0.8
0.4—0.6
0.2 —0.4

0—0.2
(
—0.2) —0

( —0.4) —(
—0.2)

( —O. 6)-(—0.4)
(
—0.8)—( —0.6)

(
—1.0)—(

—0.8)

4283
4312
4524
4549
4724
4476
4086
4076
4052
4099

4193
4131
4315
4204
4238
4182
4084
4127
4048
4080

4152
4218
4267
4320
3832
3842
4091
4101
4024
4039

4220
4289
4229
4161
3399
3329
3984
3934
4104
4031

4209
4147
4248
4278
4447
4472
4115
4000
4060
3935

4223
4093
4242
4167
4559
4673
4009
4080
4155
3988

4128
4211
4189
4251
4192
3941
4015
3928
4025
4052

4210
4221
4304
4082
4362
4243
4113
4002
4073
4031

4146
4304
4154
4066
3023
3034
4127
4055
4026
3953

4382
4301
4206
4261
4564
4447
4045
4037
3902
4049
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TABLE V. Number of interates in cells of the 5-wave phase space of the tricloid with a stable two-bounce orbit.

0. 0-0. 1 0. 1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

0.8 — 1.0
0.6—0.8
0.4—0.6
0.2 —0.4

0—0.2
(
—0.2)—0

( —0.4)—(
—0.2)

( —0.6)—( —0.4)
(
—0.8)—( —0.6)

(
—1.0)—( —0.8)

5563
6017
6059
5922
6365
6107
5736
5751
5743
6071

5233
5902
6032
6137
5957
5911
5925
5732
5737
6357

5401
6141
5947
6116
5660
5628
5687
5793
5733
5993

5691
5958
6093
6130
5124
4944
5715
5618
5789
6182

5318
6050
6195
5996
6146
6084
5877
5801
5849
6197

5272
6002
5898
6093
6451
6311
5779
5825
5739
6189

5771
6047
6119
6032
5886
5749
5773
5801
5788
6199

5481
6119
6077
5970
6057
5930
5699
5724
5763
6042

5199
6035
6067
5803
4803
4750
5809
5890
5817
6371

5463
6095
6053
6053
6400
6293
5688
5817
5788
6002

of Schrodinger's equation with two di6'erent values of the

potential in regions 1 and 2. The orbits shown in Fig. 20

satisfy the following conditions: they close on them-

selves; they have equal angles of incidence and reflection

when they are reflected either from the outer bounding

(stadium-shaped) curve or from the boundary separating

the two regions of diA'erent potential, and, when

transmitted through the boundary, their angles of in-

cidence and transmission are determined by conservation

of tangential momentum at the boundary [the elastic
medium analog of which is Eq. (15}].

With ray splitting the trace formula becomes [11]

( Ak )' Ti, Sk(E}
d(E)= . g . exp i +Pkih k 2sinh A,k/2

(35)

where d(E) is the oscillatory contribution to the density
of states as a function of energy E, k labels the discrete
set of closed orbits, and the other quantities in Eq. (35)
have the following meanings.

The quantity Sk(E) is given by Sz(E)= fp dq, where
the integral is taken around closed orbit k and represents
the action for this orbit (here p and q denote position and
momentum). T& is the primitive period for closed orbit

k. kz is the stability exponent for closed orbit k; it gives
the exponential rate of increase of linearized perturba-
tions of the orbit at a surface of section across the closed
orbit with the perturbed orbits satisfying angle of in-
cidence equal angle of reflection at all reflections and con-
servation of tangential momentum at all transmissions.

The quantity AI, is given by

"A: jl

rZ (1—
Ip, I'}

j=lg Ip, I'

where p, is the (amplitude) reffection coefficient at the ith
reflection, and rk and tI, are the number of reflections and
transmissions experienced by closed orbit k. Basically,
Ak is the quantum probability that a particle starting
along a leg of the closed orbit completes one circuit of the
orbit. For example, for the closed orbit in Fig. 20(a)
r„=1, t& =0, and Az is Ip, I, where p, is the reffection
coefficient for the angle of incidence for the ray incident
on the boundary between the two regions; for the orbit in
Fig. 20(b) rk=0, tl, =2, and Az is (1 lpbl ) wherePb is

the reflection coefficient for the ray incident from region
1 (which is the negative of the reffection coefficient for
the ray incident from region 2); for the orbit in Fig. 20(c),
rI,. = 1 and t& =2.

Finally, the phase quantity Pk includes the sum of the

0.8

0.6—

0.4—

0.2

A

FIG. 17. Phase-space plot of
a chaotic orbit of the tricloid
without ray splitting for
y=0. 785, R, =1, and
R2=4.3411. There is no stable
two-bounce orbit.

0.0
0.0 0.1 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0.9 1.0
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1.0— P WAVE SV WAVE

O.S

0.6

0.4

FIG. 18. Orbit resulting
from the same initial condi-
tions as those in Fig. 17 when
ray splitting is present.

0.2

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

phase of all the reflection coefficients p; plus the Maslov
contributions. In particular, if p; is negative, then the
corresponding angle is n. Also, when there is critical
reflection, then p; has unit magnitude, but is complex,

p, =exp(iP, ), and this P; adds to P&. (Note that there is

no phase contribution due to a transmission because the
transmission coefficient is always real and positive. )

In the absence of ray splitting Ai, -=—I, Pi,. is the Maslov

phase, the closed orbits are the usual periodic orbits, and

(35) reduces to the known form without ray splitting. In
the case of ray splitting, one can expect many more
closed orbits than for a comparable problem without ray
splitting. This is because on each encounter with the
boundary a ray generates two daughters, each of which

could be part of a periodic orbit. Thus in the sum there
will be many more terms. Counterbalancing this increase
in the number of terms is the fact that the amplitude 3&
decreases exponentially with the number of ray splittings
and hence with the length of the orbit. %e emphasize
that, although our discussion in this section has been in

the context of ray splitting for the Schrodinger problem,
a similar result applies in other ray splitting situations,
such as the elastic medium problem.

VI. CONCLUSION

All the numerical examples which we studied support
the hypothesis that ray splitting greatly increases the in-
cidence of ergodicity. For the case which is ergodic in
the absence of ray splitting, ray splitting does not alter
the ergodicity. For cases we studied for which the phase
space consists of a mixture of chaotic and integrable re-
gions in the absence of ray splitting, the presence of ray
splitting dramatically alters the situation. In particular,
we found that KAM tori lying partially or entirely in re-
gions of the phase space where ray splitting is possible
are destroyed by ray splitting. This includes all orbits
which originate as I' waves and all S wave orbits which at
any point pass below the critical angle for wave conver-
sion.

However, although we found a prevalence of chaos in
systems with ray splitting, two remnants of the integrabil-
ity in the analogous system without ray splitting remain.
First, there may be actual KAM surfaces for orbits origi-
nating in the wave type with smaller phase velocity.
These will be entirely in the region below the critical an-

gle, where no wave-type transition occurs.
Second, for the elastic medium case, the existence of

TABLE VI. Number of iterates in cells of the P-wave phase space of the tricloid without a stable two-bounce orbit.

0-0. 1 0. 1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

0.8 —1.0
0.6—0.8
0.4—0.6
0.2 —0.4

0—0.2
(
—0.2) —0

( —0.4) —( —0.2)

( —0.6)—( —0.4)

( —0.8)—(
—0.6)

(
—1.0)—(

—0.8)

4402
4402
4378
4316
4335
4141
3984
4026
4050
4134

4281
4135
4077
4213
4098
4160
4133
4156
4069
4062

4217
4164
4181
4211
4038
4042
4100
4008
4051
4104

4207
4150
4206
4141
4056
4061
4085
4119
4144
4115

4278
4267
4283
4354
4173
4131
4075
4056
4056
4038

4333
4175
4257
4175
4151
4153
4221
4099
4021
4086

4223
4239
4170
4178
4108
4168
4043
4002
4069
4111

4266
4157
4106
4167
4198
4026
4071
3953
4122
4075

4342
4142
4037
4115
4038
4138
4210
4190
4088
4100

4254
4204
4114
4145
4201
4128
4061
4004
3988
4038
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/
Boundary between
Regions 1 and 2

FIG. 19. Two-bounce orbit for electromagnetic waves. 0»
and 8» are the Brewster angles for the media in regions 1 and 2,
respectively.

stable two-bounce orbits in the no-ray-splitting case re-
sults in pseudostable orbits, even in the presence of ray
splitting. Although the two-bounce orbits are part of the
chaotic region, orbits perturbed from them leave their vi-

cinity by a different process which is very slow.
Thus, with the exception of the case in which the equa-

tion governing ray splitting [for example, Eq. (15)] maps
an invariant curve of one phase space onto an invariant
curve of the other phase space, the following summarizes
our findings for two-dimensional elastic domains bil-
liards:

(i) Orbits originating in P space are chaotic for any
geometry:

(ii) Orbits originating in S space below r =r, are chaot-
ic for any geometry.

(iii) If there are integrable orbits of the case without
ray splitting which lie entirely above ~=r„the S phase
space above v =~, contains KAM surfaces even in the
presence of ray splitting.

(iv) If there are stable two-bounce orbits for the case
without ray splitting, there are pseudostable orbits in the
case with ray splitting which are part of a chaotic region,
but for which diffusion out of these orbits is much slower
than exponential.

(v) Although we have considered here the particular

FIG. 20. Some closed orbits for a ray splitting stadium bil-

liard corresponding to Schrodinger s equation with two homo-

geneous regions of different potential separated by the diagonal
line shown.

example of a bounded elastic domain, the phenomena de-
scribed above are more general (Sec. IV D).

For a general two-wave system it is easy to see that, if a
ray experiences splitting, then any invariant curve associ-
ated with it in the case without splitting will be destroyed
in all but one exceptional case. This is the case in which
the equation which governs the wave-type transition

fter
—

KSbefore (36)

maps an invariant curve for the problem in the absence of
ray splitting from one phase space onto an invariant
curve in the phase space of the other wave type. This can
be seen as follows: Consider a ray launched in one wave
type with a value of (cr, r) that lies on an invariant curve
of that phase space. (See Fig. 21.) At each reflection the
ray may undergo ray splitting; thus, for each value of v.

on the invariant curve indicated by "before" on the
figure, the ray also has access to a value v.,ft K7b f„,.
Thus the ray also has access to the curve marked "after"
on the figure. If the curve marked "after" is not an in-
variant curve in the absence of ray splitting, later iterates
of the wave type 1 space will move off the curve filling an
area. Thus the original invariant curve is destroyed by

TABLE VII. Number of iterates in cells of the S-wave phase space of the tricloid without a stable two-bounce orbit.

0-0. 1 0. 1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

0.8 —1.0
0.6—0.8
0.4—0.6
0.2—0.4

0—0.2
( —0.2)—0
( —0.4)—(—0.2)
( —0.6)—( —0.4)
( —0.8)—( —0.6)
( —1.o)—( —o.8)

5861
5900
6015
5956
6150
5900
5852
5713
5948
5754

6058
5661
6003
5839
5802
5842
5914
5825
5628
5773

5997
5926
5952
5996
5945
5846
5842
5839
5872
5848

5654
5986
5915
5897
5900
5895
5849
5711
5799
5510

5960
5816
5814
5870
5946
5838
5865
5865
5748
5682

5942
5736
5895
5919
5885
5951
5804
5861
5670
5729

5682
5910
6084
5918
5867
5898
5809
5846
5810
5543

5912
5990
6042
5830
5869
5830
5851
5743
5894
5777

6037
5593
6066
5917
5968
5887
5800
5901
5624
5753

5819
5888
5993
5952
6010
5837
5883
5790
5836
5649
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before APPENDIX

FIG. 21. The invariant curve marked "before" maps onto a
curve marked "after" in the other phase space.

ray splitting unless Eq. (36) maps it onto an invariant
curve in the other phase space.

Clearly, this is an exceptional situation. One example
of such a situation for the case of a two-dimensional elas-
tic region is the case of a circular boundary. In this case
the invariant tori are straight lines, ~=const, in both the
S-wave and the P-wave (0,7) phase space. Thus wave-
type transition according to Eq. (36) simply allows the
transition to an invariant curve in the other phase space.
The return transition then returns the ray to the original
invariant curve. Thus, in this exceptional case, an orbit
with ray splitting is restricted to lie on a pair of invariant
curves of the case without ray split ting.

In by far the great majority of cases, however, ray
splitting destroys most of the invariant curves. Thus the
presence of ray splitting greatly increases the prevalence
of ergodic behavior. This is strikingly illustrated, for ex-
ample, by comparing Figs. 17 and 18. The prevalence of
ergodicity with ray splitting should have important impli-
cations for the wave problem. For example, we conjec-
ture that, since the integrable regions are so small, an ap-
proximate W'igner distribution of energy-level spacings
should apply well to the situation of Fig. 18, while with
the same shape without ray splitting this would not be so.
In fact, it appears that much of the work done on quan-
turn chaos in the absence of ray splitting should extend
naturally to wave problems with ray splitting. As an ex-
ample, in Sec. V we have outlined a generalization of the
Gutzwiller trace formula to situations with ray splitting.

Ns

where Nz is the number of rejections which have an in-

cident S wave, Np is the number of reAections with an in-

cident P wave, ag' is the incident angle at the jth S wave

reAection, and az ' is the incident angle at the kth P-wave

reflection. Since the orbits are ergodic in the (o, r) phase

space, and thus are uniformly distributed in ~, the aver-

ages in Eq. (Al) over all reflections can be replaced by

averages over ~,

2N~ I Asp(as )d(cosa, )

2' J A ps (a„)d(cosap )
0

2' f Asp(tzs)d(tccosas) .
7T 0

(A2)

Thus we have

(A3)

We wish to find the ratio of the number of S wave
rejections to the number of P wave rejections for an er-
godic orbit. For an ergodic Monte Carlo orbit, the num-
ber of times it is converted from wave type P to type S
must equal the number of times it is converted from wave

type S to wave type P, with an additional additive term of
+ 1 or —1 if it starts in P and winds up S or vice versa.
Thus, for many bounces we have
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