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Ray Splitting and Quantum Chaos
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Recent advances in the theory of the quasiclassical approximation for systems that are cha
the classical limit are extended to the case of ray splitting, in particular, to the splitting of an inc
ray into a reflected and refracted component at a sharp interface. An instructive example is pre
and novel results are found. These include evidence for ray split and periodic orbits in the sp
correlations and a new type of “scarred” eigenstate based on combining nonisolated periodic
whose quasiclassical contributions have a nontrivial phase from total internal reflection.
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Chaosis a well-defined concept usually applied tode-
terministic nonlinear dynamical systemswhich haveexpo-
nential sensitivity to initial conditions.“Quantum chaos”
is the field of study of quantum (or wave) systems who
classical limit is chaotic. The “classical limit” islya ! 0,
wherel is the wavelength, anda is the shortest relevan
classical length. Thequasiclassical approximation(QCA)
is the most important tool of quantum chaos, as it treats
case0 , lya ø 1.

Much interest exists in extending the QCA as wide
as possible. There are important cases for which
classical limit does not exist or is physically irrelevan
If there is a characteristic lengthd for which lyd $ 1,
wave effects may persist. Simplification is achieved
dyl ! 0 while for all other lengthslya ø 1. The
optical phenomena ofrefractionat well defined interfaces
and diffraction [1] at edges or corners are no doubt th
oldest and best understood effects of this type.

In this paper, we consider the case of refraction a
reflection at an interface. A ray or classical trajecto
splits into a reflected and refracted ray when it strik
the interface. Thisray splitting is characteristic of the
situation where there are just a few places that a len
d ø l exists. Another example is the surface of an elas
solid, where incident pressure waves split into reflec
pressure and shear waves [2,3]. In general, if two or m
distinct bulk waves can coexist at an interface, there w
be a coupling between them describable as ray splitt
See also Refs. [2] and [4] for discussion of ray splittin
and quantum chaos.

We have extended recent developments in the theor
the quasiclassical approximation in quantum chaos to
case of ray splitting at an interface. A typical model h
been worked out in detail and there are a number of
structive new results. We concentrate here on the m
important of these and we will give further details els
where [5]. In particular, we give here a generalization
Gutzwiller’s trace formula, valid for ray splitting as we
as nonisolated and stable periodic orbits. (The stand
formula assumes hyperbolically unstable isolated perio
orbits.) It is expressed in terms of Bogomolny’s tran
0031-9007y96y76(14)y2476(4)$10.00
e

e

e

f

d

th
c
d
e

ll
g.

of
e

-
st

f

rd
ic
-

fer operator [6,7] which we generalized to ray splittin
We also use our ray-splitting model to numerically che
predictions of the trace formula for peaks in the Four
transform of the density of states. The transfer opera
formalism allows several levels of the quasiclassical a
proximation which were checked numerically and found
be satisfactory [5]. Using the transfer operator approa
we also found simple theories (one of which is discuss
below) for some novel types ofscarswhose existence de
pends on refraction and reflection.

The model example we study is asplit circle billiard
(Fig. 1), a system which could be realized experimenta
It is described by the two-dimensional equationf=2 1

k2
L 2 usxdV0gCsx, yd  0, with C  0 on the boundary

of the unit circle≠C, x2 1 y2  r2  1, and us?d is the
unit step function. In the left semicirclex , 0, the
potential energy vanishes, while on the right it is a consta
V0 [8]. The above wave equation describes a quant
particle in units massm 

1
2 , h̄  1, and energyE  k2

L.
Or if we consider a cylindrical microwave cavity with
dielectric of index of refractionn0 in x , 0 and vacuum in
x . 0, C could describe an electric field polarized in th

FIG. 1. Geometry of the ray-splitting billiard. A typical ray
splitting trajectory is also shown.
© 1996 The American Physical Society
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zdirection, andV0  k2
Ls1 2 n22

0 d. Or it could describe a
drumhead with different mass membranes in left and ri
semicircles. We are interested in the short wavelen
caseE, V0 ¿ 1, EyV0 , 1. The critical angle (from the
normal) for internal reflection is given byV0yE  cos2 ac,
so that rays incident from the left at an angleaL are
reflected at angleaL and refracted or transmitted at a
angleaR according to Snell’s law, sinaL  sinac sinaR .

Bogomolny’s operatorT su, u0d gives the semiclassica
contribution of a ray emitted on≠C at point u0 and
arriving at pointu with no intermediate bounces from≠C.
T is a precise expression of Huygen’s principle. Pa
bouncingn times from ≠C are obtained by considering
the nth power (iterate) ofT. The right semicircle is
described byjuj , py2 (denotedu [ CR) while u [
CL meansju 2 pj , py2. Let kR ;

p
E 2 V0 be the

wave number inCR . If E . V0 thenkR  1ijkRj. The
T operator can be writtenT  Td 1 Tr 1 Tt. Thedirect
orbit betweenu and u0 that does not encounter th
discontinuity gives a contribution

Tdsu, u0d  2

s
1

2pi

Ç
≠2Sdsu, u0d

≠u≠u0

Ç
eiSdsu,u0d, (1)

where the actionSdsu, u0d  2kR,Lj sin 1
2 su 2 u0dj (u and

u0 both in CL or both in CR). This is the only kind
of contribution for the circle billiard. The negative sig
accounts for the Dirichlet condition on≠C. For the
reflectedorbit we must generalize Bogomolny’s formul
Eq. (1) to include thereflection coefficientsgiven by

rsu, u0d  6skL cosaL

2 kR cosaRdyskL cosaL 1 kR cosaRd

(2)

encountered in the elementary problem of a plane w
incident on an interface. In Eq. (2)aL,R 

1
2 su 2 u0d, if

u, u0 [ CL,R andaL is related toaR by Snell’s law. The
positive sign is taken foru [ CL. Then

Tr su, u0d 
2rsu, u0d

p
2pi

sÇ
≠2Srsu, u0d

≠u≠u0

Ç
eiSr su,u0d, (3)

andSr  2kL,Rj cos1
2 su 1 u0dj.

The contribution toT of a transmittedor refracted orbit
is

Ttsu, u0d 
2tsu, u0d

p
2pi

sÇ
≠2Stsu, u0d

≠u≠u0

Ç
eiSt su,u0d. (4)

In Eq. (5) (if u0 [ CL, u [ CR) Stsu, u0d 
kRLsu, jd 1 kLLsu0, jd, where Lsu, jd p

1 1 j2 2 2j sinu is the distance from a pointu
on ≠C to a point on the interfacey  j, x  0 such
that Snell’s law is obeyed by the two rays. In fact,j
ht
th

s

ve

minimizesSt . The transmission coefficient is

tsu, u0d  2
p

kLkR cosaL cosaRyskL cosaL 1 kR cosaRd ,

(5)

where tanaL  sj 2 sinuLdy cosuL, uL being that ar-
gument of t which is in CL. Note that jrsu, u0dj2 1

jtsu, u00dj2  1, where the ray reflected fromu to u0 is
split and transmitted tou00. This makes the operatorT
unitary in QCA. For anglesaL . ac, kR becomes pos-
itive imaginary, the reflection coefficient has unit mag
nitude but nontrivial phase, and the transmitted wave
evanescent rather than propagating.

These expressions forT may be written down almost
by inspection. They can be checked by formulatin
the problem as an exact integral equation [5]. Th
Fredholm theory provides an expression for the Fredho
determinant DsEd  detsss1 2 TsEdddd whose zeros give
the spectrum [9]. The imaginary part of the logarith
mic derivative of D is a generalization of the serie
known (in the hard chaos case) as the Gutzwiller tra
formula. Using the relation between the determina
and the trace, we obtain the formal expression f
the trace formula [7] for the density of states [10
dsEd  dsEd 2 p21ImfdydE

P
r21TrT sEdrg, where

dsEd is the smoothed state density [11]. (See Ref. [2] f
the Gutzwiller formula in the case of ray splitting with
hyperbolically unstable isolated periodic orbits.)

If the integrals over≠C involved in the trace are evalu-
ated by the method of stationary phase, the result
expressed in terms of periodic orbits. We note that in t
presence of ray splitting the term “periodic orbit” mean
a closed ray path traversed with periodically repeat
particular choices of transmission or reflection at the r
splitting boundary. (See some examples in Fig. 2.) T
trace ofT r gives the contribution of all periodic orbits with
r bounces from≠C. Such a contribution will have a phas
Sp 

H
PdQ, the action along the orbit. The contribution

of a given periodic orbitp is apeiSp . The weightsap

for nonisolated orbits can be evaluated as well as
ones for isolated orbits. In the electromagnetic versi
of the problem, whereac is fixed andy0 is proportional
to k2

L, V0  hk2
L, each actionSp  kLsp wherespshd is

independent ofkL. A Fourier transform with respect to
kL of our formal trace expression fordsEd has peaks at
the values of the transform variables  sp. (One does
the transform for complexkL thus avoiding the divergence
problem.)

In Fig. 2 we show such a power spectrum [12] for ou
model (ath  0.5) labeled by a schematic indicating th
type of orbit giving the peak. [Several peaks appear
reduced actions half those of the orbits indicated. Th
is because the transform was made for those levels
under reflection through thex axis. This symmetry can be
geometrically represented by replacing the circle billia
by its upper semicircle, with Dirichlet conditions on thex
2477
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FIG. 2. Fourier transform
R

dkLe2iskL dsk2
Ld (power spectrum)

for h  0.5. (The peak ata and the peak atc coincide for
h  0.5.)

axis. Neumann conditions give the even states. Retra
orbits thus desymmetrized give half the action, wh
orbits such as (d) are not so affected.] The first four pe
are associated with nonisolated families of periodic orb
and the other labeled peaks are for isolated orbits [
We have also tracked these peaks as a function ofh and
found that they agree with thespshd’s found from simple
trigonometry. The position of the peaks is determin
by simple geometry. By exploiting theT operator, we
can find the amplitudes as well, even for nonisolated
stable orbits. We will report on these results elsewher

Figure 3 shows a few of many wave functions we ha
obtained numerically, together with their energy valu
The notation181 indicates the 18th even state (whi
has energy 123.6). There are chaotic states,221, 321,
whispering gallery states351, 582, internal reflection
scars181, 311, and states clearly based on periodic orb
refracting through the center of the circle,191, 632. The
regions of high probability density are dark.

We can also, in several cases, obtain semiana
approximate solutions to the eigenvalue equation

FIG. 3. Some eigenstates forV0  100. Energies are given
(above the pictured state), as well as the number of the s
and its symmetry (1 for even and2 for odd with respect to
the x axis).
2478
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du0 T su, u0, Eadcasu0d  casud . (6)

The most interesting example of this novel use of t
transfer operator is probably that of the internal reflecti
scars [e.g., Fig. 3s181d] which are apparently based o
classical periodic orbits totally internally reflected from
the circle center. In the model,any orbit passing through
the center is part of a periodic orbit. There is a continuo
infinity of such periodic orbits, all with the same action
and so these periodic orbitsare not isolated. They
are marginally unstable. Prominent scars of nonisola
orbits are well known in other billiards, e.g., the Sin
billiard or the Bunimovich stadium billiard.

A remarkably simple theory of such scars features “se
ond” WKB quantization. Since only the reflected o
bit is important we approximateT . Tr , Eq. (3). The
state desired classically passes close to the center an
has low angular momentum. It thus varies comparativ
slowly with u. In fact, parametrize in WKB fashion
csud  sinsss

p
kL fsudddd, where we use the system symm

try to take the unknown functionfsud either even or odd
underu ! 2p 2 u. The integral Eq. (6) is done in the
spirit of stationary phase. We encounter

F6sud  i
Z

du0 rsu, u0d
q

kL cossss 1
2 su 1 u0ddddy2p

3 e2ikLj cossss 1

2
su1u 0ddddje6i

p
kL fsu0d. (7)

Assuming f 0sud , 1, the stationary point is at
u0  p 2 u. This has the geometric meaning th
the orbit reflects from the interface at the circle ce
ter. The prefactor is evaluated at the stationary po
This yields

p
kLy2p eiysud, where rsu, 2ud  eiysud

and ysud  22arccosscosuy cosacd. We now ex-
pand the u0 dependence of the exponent in (7
about 2u, i.e., cossss 1

2 su 1 u0dddd ø 1 2
1
8 su 1 u0d2,

fsu0d ø fs2ud 1 f 0s2ud su 1 u0d. Then F6sud ø
i expih2kL 1 f f 0sudg2 1 ysudj exph6ik

1y2
L fs2udj.

In order to have a solution of Eq. (6) the first ex
ponential inF must be equal to7i, in the even (odd)
case, respectively. This leads to the conditionf f 0sudg2 1

ysud  e  2psp 7 1y2d 2 2kL. This is a WKB-like
condition wheref 0 plays the role of a momentum an
ysud (the phase of the reflection coefficient) is an attra
tive potential. [Notee ø 1, so it represents a small dif-
ference of two large numbers. In the language of ene
levels, it is a quantum defect. This also means that
scale of variation ofcsud is intermediate betweenkL and
unity, which is rather unusual.]

An appropriate boundary conditionc  0 at ju 2

pj 
1
2 p is obtained by considering the grazing orbit

Then the direct orbit has nearly the same length as
reflected one, and contributes with the opposite sign, si
the reflection coefficient is21 at grazing incidence. This
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FIG. 4. The quantum defect in the semiclassical appro
mation of Eq. (8) (solid line) and the full quantum defec
(squares).

yields the expressionZ ue

py2
du

q
e 2 ysud 

p
p

kL
sl 1 dd . (8)

Since ysud is an attractive “potential,” there can be
“turning point” ue , p where e  ysued and in this
case d  1y4. If there is no turning point then in
effect ue  p and d  0 for odd modes andd 

1
2 for

even modes. The energies are labeled by two quant
numbers,p andl. The former counts the radial nodes an
the latter the angular. The state shown hasl  1, p  3.
(Higher values ofl in the range of energies we studie
generally involve incident angles less than the critical,
the approximation keeping onlyTr fails.) We carried out
this WKB calculation and found approximate energies f
the sequence of internal reflection scars. These ener
are parametrized by the “quantum defect”gp such that
Ep  p2sp 1 gpd2 and the results are compared wit
the numerical levels in Fig. 4.

To recapitulate, we have generalized the modern th
ory of the quasiclassical approximation to certain prac
cally important cases for which the classical limit does n
strictly exist, namely to the case of sharp interfaces whe
classical rays may split with certain quantum probabilitie
Our main tool has been the generalization of the trans
operator to include probability amplitudes, including bo
magnitude and phase. We have found numerical con
mation that the resulting theory, an approximation at t
quasiclassical level, is quite a good approximation. In p
ticular we verified that split-ray periodic orbits give rise t
distinctive energy level correlations. As an example
a result which is completely inaccessible to the standa
type of trace formula, we developed a new method whi
explains a novel type of scarred eigenstate which depe
explicitly on the phase shift of the total internal reflection
This method should be useful in other contexts.
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