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SUMMARY

Cloud computing is an emerging technology where IT resources are provisioned to users in a set of a
unified computing resources on a pay per use basis. The resources are dynamically chosen to satisfy
a user Service Level Agreement and a required level of performance. A Cloud is seen as a computing
platform for heavy load applications. Conjugate Gradient (CG) method is an iterative linear solver
which is used by many scientific and engineering applications to solve a linear system of algebraic
equations. CG generates a heavy load of computation and therefore it slows the performance of the
applications using it. Distributing CG is considered as a way to increase its performance. However,
running a distributed CG, based on a standard API, such as MPI, in a Cloud face many challenges, such
as the Cloud processing and networking capabilities. In this work, we present an in-depth analysis
of the CG algorithm and its complexity in order to develop adequate distributed algorithms. The
implementation of these algorithms and their evaluation in our Cloud environment reveals the gains
and losses achieved by distributing the CG. The performance results show that despite the complexity
of the CG processing and communication, a speedup gain of at least 1,157.7 is obtained using 128
cores compared to NAS sequential execution. Given the emergence of Clouds, the results in this paper
analyzes performance issues when a generic public Cloud, along with a standard development library,
such as MPI, is used for High Performance applications, without the need of some specialized hardware
and software.
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1. INTRODUCTION

Conjugate Gradient (CG) [17] method is one of the most popular linear solvers to solve
a system of linear equations in many scientific and engineering applications, such as oil
reservoir simulation, aerospace vehicle guidance and control, circuit analysis, physics, etc.
The CG is an effective method for symmetric positive definite systems. However, CG is
computationally intensive, mainly due to the number of arithmetic operations involved in
its equations. Therefore, enhancing the performance of the CG will enhance the performance
of the applications using it. Distributed computation is meant to increase the efficiency of
computing-intensive applications, as computational load is distributed among a number of
workers. However, this efficiency decreases when communications have to take place between
the distributed computational parts to reach the final solution.

While many researchers have been seeking the best way to distribute data and computing
load of the CG method for specific parallel computing platforms, very few tackle the
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2 DISTRIBUTED CG METHOD

inter-communication issues between the computational load, and proposes and evaluates
performance on a generic computing platform.

The Cloud Computing [1] [2] [3] is an emerging technology in which computation philosophy
has shifted from the use of a personal computer or an individual, specialized server to a cloud of
distributed resources. The main objective is to draw benefits from the underlying infrastructure
services to satisfy a Service Level Agreement [7] for a user. As Cloud Computing is targeting
a wide of public use, many of the standard and known libraries and tools should be available
in the Cloud to Cloud developers as Software services to develop their own applications that
can run in the Cloud. Message Passing Interface (MPI) is probably one of the most known
and widely used tool to distribute computations in a distributed system environment. In this
work, our cloud consists of computing resources, such as nodes, network and cores. A core
here is an abstraction of the smallest processing unit that is allocated to an application. A
core can be a context, a core or a processor. Our cloud uses provisioning of resources as
defined by the National Institute of Standards and Technology [5], where nodes, network and
cores are provisioned to run an application as requested by the application user. We use the
Rocks technology [6] for provisioning. Our cloud does not use virtualization technique and
images are deployed to run the CG application. There is a sense of location independence
where our distributed CG application can run in any of the provisioned resources which fit the
application. This is achieved by using the Sun N1 Grid Engine scheduler which schedules the
application components to the underlying provisioned computing resources.

In this work, we study the impact of load distribution and communication strategies on the
performance of the CG method using a Cloud of computing resources and MPI. Our parallel
CG scheme has the following advantages:

e Portability. Our parallel CG scheme and implementation are not dependent on any
specialized platform. Many of the works in CG evaluate the performance of CG on a
specialized platform ([18], [19], [20] [21], [11], [12], [22]).

e Considering unstructured sparse matrix. Our parallel CG scheme considers a
sparse matrix of unstructured nature which makes load balancing of matrix-vector
multiplication more challenging. [22] introduces a parallel algorithm for matrix-vector
multiplication, but considers a particular matrix with regular sparsity. On the other
hand, our scheme is generic and can be applied to structured regular matrix shapes as
well.

e Load balancing. Our scheme introduces a load-balancing model. Computational load is
equally distributed to available computing resources in the system.

e Reducing communication overhead. Our scheme introduces an overlapping strategy to
hide communication overhead. The communication is needed between computational
resources to exchange data needed for a further step in the computation.

There is an interest in porting and implementing scientific applications on top of a Cloud
computing environment [4]. However, to our knowledge, our technique is the first attempt
to distribute the CG method in a Cloud computing environment using standard libraries,
available in the Cloud. In particular, the CG method is implemented using MPI and it is
distributed to the Cloud using the Sun N1 Grid Engine as an infrastructure for scheduling the
computations. Significant performance can be obtained when considering load distribution and
communication strategies in a Cloud of processors of the CG method. We implement these
strategies and analyze their performance. Significant performance is obtained, encouraging
implementation by other applications. The performance of our parallelization technique is
evaluated by measuring the speedup gain of our parallel CG method against the scalar
sequential; the former being demanding in terms of designing efforts, in particular when
considering communication cost. We compare our results to the National Aeronautics and
Space Administration (NASA) benchmark [16], which is formally an application of the inverse
iteration algorithm for finding an estimate of the largest eigenvalue of a symmetric positive
definite sparse unstructured matrix with a random pattern of non zeros. However, the essential
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IMPLEMENTATION AND PERFORMANCE OF CG METHOD 3

part of the benchmark is the solution to an unstructured sparse linear system using CG.
The NAS benchmark distributes the matrix row-wise and does not consider a load balanced
approach. It uses a broadcast strategy to broadcast the value of the vector p after every
iteration.

The rest of the paper is organized as follows: In Section 2, we provide the background for
this work. The complexity analysis of the CG method is presented in Section 3. Section 4
describes the system model. In section 5, we present a dependency graph for the CG method
computational components and discuss the communication issues in a distributed CG. Section
6 discusses a scheduling algorithm for the CG distribution. In Sections 7 and 8, we describe our
parallel algorithm approach. Section 9 describes the inter-communication problem between the
different CG computational parts and our approach to solve the problem. Section 10 overviews
related works. The experiments and performance evaluation of our approach are presented in
Section 11. Section 12 concludes our work.

2. BACKGROUND

CG method is one of the most popular iterative method for solving large systems of linear
equations. These systems should be symmetric and positive definite. Many scientific and
engineering applications generate such type of systems, such as structural analysis, and circuit
analysis. CG method is also used in oil reservoir simulation techniques, as for instance to
compute the pressure, the porosity, etc. of a reservoir. The CG can be applied to large linear
systems due to its considerably smaller memory requirement as compared to other direct linear
solvers.
The CG method solves a system of linear equations of the following form:

Ax =10

Where z is an unknown vector, b is a known vector and A is a known, square, symmetric,
positive-definite or positive-indefinite matrix.

The CG algorithm finds the solution to a system of linear equations which represent an
engineering application. For example, in oil reservoir simulation, the number of linear equations
corresponds to the number of grids of a reservoir; the unknown vector x being the oil pressure
of the reservoir. Each element of the vector z is the oil pressure of a specific grid of the reservoir.

However, as most of the linear solvers, the CG may take a long time to solve a system
due to its complexity; i.e., the number of operations needed in order to solve a system of
linear equations is relatively high. This complexity increases with the number of equations
involved in the linear system. In particular, this complexity comes from the matrix-vector and
vector-vector multiplications which are heavily involved when using CG.

As shown in Figure 1, the CG method starts with a random initial guess of the solution
xo (step 1). Then, it proceeds by generating vector sequences of iterates (i.e., successive
approximations to the solution (step 10)), residuals corresponding to the iterates (step 11), and
search directions used in updating the iterates and residuals (step 14). Although the length of
these sequences can become large, only a small number of vectors needs to be kept in memory.
In every iteration of the method, two inner products (in steps 9 and 13) are performed in
order to compute update scalars (steps 9 and 13) that are defined to make the sequences
satisfy certain orthogonality conditions. On a symmetric positive definite linear system these
conditions imply that the distance to the true solution is minimized in some norm (step 12).

3. COMPLEXITY ANALYSIS OF THE CONJUGATE GRADIENT METHOD

Figure 1 shows the algorithm of the CG method which consists of two main steps: initialization
where the residual vector ry associated with initial guess of the solution xg is computed, and
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4 DISTRIBUTED CG METHOD

1. o = 0

2. rg:=b— Axg

3. po =10

4. k=0

5. Kmax := maximum number of itera-

tions to be done
if £ < kmax then perform 8 to 16
if k¥ = kmax then exit

calculate v = Apy,

’I‘ET}C

prv

10. zpq1 =2k + Pk

11. 41 =1 — oV

12. if ri4q is sufficiently small then go to 16

end if
13. B == Thi ki

’I‘ET}C
14. pry1 = rrq1 + Brpr
15. k:=k+1
16. result = xp41
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Figure 1. Conjugate Gradient Algorithm.

iterating the search to reach the solution. The initialization computes an initial search direction
po=ro, which is used in the first iteration of the CG computation loop. The subsequent values
pr. are computed in subsequent iterations of the loop. In the first iteration of the loop, the value
ag is computed. Then, the values of py and ag are used to find the next value of x, namely
x1. This result (z1) gives an improved approximate solution for the system. Now, the next
residual vector 71 is computed using the formula r; = rg — agApg. If the value of resulting r
is very small, then the loop terminates and the value of = is found to be x;. Otherwise, the
scalar Oy is computed that will be used to determine the next search direction p; by using the
relationship: p; = rg — Bopo. The iteration number k is incremented by one and iteration is
repeated starting from step 6. The search stops when either the residual value r becomes very
small or a given maximum number of iterations has been reached.

For a matrix of A(n,n) and vectors (z, r, and p) of length n each, the CG complexity
consists mostly of matrix-vector multiplications and vector-vector multiplications. As CG is
applied for sparse matrices, let us assume that there are m; non-zeros elements in each row 4
for the matrix A.

In the following, we screen the total number of arithmetic operations (TNAO), computed
from the number of multiplications (NM), summations (NS) and subtractions (NB), involved
in the computation of the CG. In this analysis, we assume that every type of operation takes
the same CPU computation time.

e For the initialization step, which is out of the CG for loop statement (step 2)
NM(To):Z?:l myg,
NS(ro)=>_;—,(m;) — n and NB(rg)=n
where i = 1, ...,n and n is the number of rows of the matrix A,
= TNAO(T()):2 Z?:l m;

For a single iteration, the CG involves the following complexity:

e For the matrix-vector multiplication v = Apy, (step 8)
NM(’U)ZZ?:l my;,
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IMPLEMENTATION AND PERFORMANCE OF CG METHOD )

NS(ro)=>_i—,(mi) —n
= TNAO(ro)=23"1",(m;) —n

e For computing «y (step 9)
NM(ay)=2n and NS(ay)=2n — 2
= adding 1 division, then TNAO(ay)=4n — 1

e For computing xp4+1 (step 10)
NM(zg41)=n and NS(zg41)=n
= TNAO(zk+1)=2n

e For computing ;41 (step 11)
NM(rg+1)=n, and NB(rx11)=n
= TNAO(rg+1)=2n

e For computing G (step 13)
NM(Bx)=2n and NS(8;)=2n — 2
= adding 1 division, then TNAO(8))=4n — 1

e For computing pg+1 (step 14)
NM(pg+1)=n and NS(pg+1)=n
= TNAO(pk+1):21’L

The total number of arithmetic operations (TNAO) for the whole for computing a CG is
then equal to:

n n
TNAO = QZmﬁkmw(zZmi +13n —2) (1)
i=1 i=1
where k4. is the number of iterations involved in the computation of the CG.
In the section 7, we exploit the complexity analysis results of the CG method to determine
a relationship between the CG method workload and the matrix row indices and the vector
indices p, , and x, to achieve an automatic load-balanced distribution of the CG.

4. SYSTEM MODEL

= il Worker

Hnk =

Figure 2. Computing Platform Model

The computing platforms that we are targeting are Clouds of computing resources. As shown
in Figure 2, our platform model consists of the following components:
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6 DISTRIBUTED CG METHOD

e Nodes. A platform consists of a collection of nodes which are connected via a network
link whose speed dictates the speed of the communication processing when data is
transmitted among the nodes. Those nodes could be located at remote distance, and
they are operating in an independent heterogeneous mode.

e Cores. We define a core here as an abstraction the smallest computing processing unit
within a node. Our core could be a context, a core or a processor. Each individual node
may consist of one or multiple cores, which depend on the built-in capacity in terms of
computing power, memory limitation and communication protocols.

When an application is scheduled to be divided and run, one of the cores of the available
computing nodes is selected at random as the master and other computing cores are selected
as associate independent computing workers to perform partitions (tasks), which are assigned
by the master core. As a result, a communication Star topology is formed between the master
worker and the computing workers. Each worker (master or computing) can receive data from
the network and perform computation simultaneously. The computing workers have computing
capacity, noted p;, wherei = 1,..., N, and N is the number of computing workers in the system.
The computing workers communicate with each others to exchange partial results. By the end
of the algorithm, each computing worker would have participated in computing part of the
final solution.

In particular, the computing platform model we consider consists of the following elements
and assumptions:

e A Cloud is considered to have N computing workers. Each computing worker i, i €
{1,..., N}, in the Cloud has a computing processing capacity of p;, where u; is the
computation speed of the worker i in float operations per second. It also has a data
receiving capacity C; to receive data from the master.

e An application consists of a total of Wiy computing float operations per second that
can be divided into tasks that are assigned to available computing workers.

e Consider a portion of the total load, task; < Wi,iq1, which is to be processed on worker
1. We represent the time required for a computing worker i to perform the computation
of task;, TComp;, as:

task;
TComp; = a:- (2)

We represent the time for sending chunk; units of data to computing worker i, TComm,,
as:

TComm; = (3)

where C; is the data transfer rate in terms of units of data per second that can be
provided by the communication link from the master to the worker 7.

5. COMMUNICATION ISSUES IN CONJUGATE GRADIENT

In this section, we present the communications issues in a parallel CG. In particular, we
devise a dependency graph among the computational components. This dependency graph
gives directions of data flow within one iteration in the same worker and among the workers
of the system for computing the distributed CG. We then discuss data distribution and
communications cost.
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IMPLEMENTATION AND PERFORMANCE OF CG METHOD 7

5.1. Data Dependency Graph

The complexity analysis in previous section shows the different computational components
involved in the CG method. In each iteration of the CG method, each computational
component can be parallelized to compute part of the output values: ay, i1, Tk+1, Bk,
and py1.

Figure 3. Dependency Graph in CG

Figure 3 shows data dependency graph, where values are dependent on other values which
are connected to and which are higher than them in the graph representation. For example,
ay is dependent on r and pi. Looking at the graph, one can analyze that the computation of
the ri41, and pr41 are dependent on global scalars ay, and Bk respectively. It is obvious that a
direct data level parallelization would not be possible without global communication between
the workers, as the data inputs to every iteration r;41 and pgy1 are globally inter-dependent
because of the scalar values oy and Sk. In addition, the computation of «aj depends on the
matrix-vector multiplication results, which in turn depends on the global vector pg. So, in
a next iteration, every worker will wait for the computational part px41 from all the other
computing workers in order to get the elements of pyy; that are needed to compute its own
part of the matrix-vector multiplication.

Another global dependency is the checking of the global value r; whether sufficiently small.
Every computing worker must compute its part of rry; and participate in the computation
of a norm (Norm(ry)) which is sent to the master worker for checking. In summary, the CG
method involves the global distribution of the scalars oy, 8k, and Norm(rg)and the vectors
Pk, and xg. The latter is needed from every computing worker in order to construct the global
solution .
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8 DISTRIBUTED CG METHOD

5.2. CG Load Distribution

One of the main goals of a CG distribution algorithm is to reduce the CG complexity, by
dividing the number of the CG operations by the number of available computing workers in the
system. The flow chart presented in Figure 1 presents 2 types of divisible loads: 1) the matrix-
vector multiplication presented in step 8 of the flowchart, and 2) the scalar-vector and/or
vector-vector operations presented in steps 9, 10, 11, 13, and 14 of the flowchart. Our load
distribution strategy follow a master-worker model, widely used in distributed applications.
The master worker divides the matrix-vector multiplication load equally among the
computing workers in the system. That means, based on the sparseness shape of the matrix, the
computing workers may get different number of rows of the matrix. Every computing worker
also participates in computing part of the scalar-vector and vector-vector manipulations which
are needed to compute oy, and (. Consequently, in every iteration, every computing worker
computes an equal part of the aj numerator and denominator. The distribution of aj and
Ok is based on the distribution of the vector 7 (part of the numerators and denumerators).
The vector rj follows the decomposition model of the matrix A, which means the number of
elements of 7 updated by every computing workers is equal to the number of rows distributed
to every computing worker. In every iteration, every computing worker communicates these
values to the other computing workers in the system so that the global oy, is known by every
computing worker to continue its execution. Each computing worker then uses the aj to
compute its part of 1 and rg4q. Similarly to g, k41 and 7,41 is decomposed in a way
that every computing workers computes number of elements that is equal to the number of
rows of its local matrix; part of the matrix A. Each computing worker computes a norm of
rg+1 (Norm(rgy1)) and sends the value to the master worker who will verify whether the
solution is reached. If the solution is reached, every computing worker sends to the master
worker its part of the solution of x. However, if the solution is not reached, then it is necessary
to compute a new search direction pg1, which is needed to re-iterate the CG. Each processor
then needs to compute an equal part of pg41. Therefore, every computing worker computes
part of the load of (3, numerator and denominator. The numerators and denominators are
then sent to all other computing workers in the system to compute the global 3. Based on
Bk, each computing worker computes an equal part of pyy1, which is, as mentioned previously,
necessary to start the next iteration. Every computing worker updates a number of elements
of pr11 which is equal to the number of rows of its local matrix, that is part of the matrix A.

6. SCHEDULING PARALLEL CG IN A CLOUD COMPUTING INFRASTRUCTURE

Initially, the master distributes the matrix elements to all the computing workers of the system.
The matrix elements are distributed in a way to have an equal number of operations of the
CG matrix-vector multiplication by each computing worker i. Only the non-zero elements
of the CG matrix are distributed. Section 7 explains a load balanced distribution algorithm
of the matrix to the computing workers. Each set of non-zero elements, denoted by nnz;,
which is sent to computing worker i, generates a value task;. In this context, task; represents
the computational load (total number of operations) generated in a single iteration in each
computing worker. It constitutes the load to compute part of v, o, zpy1, 76+1, B, and pry1,
denoted by Part(v, a, £g41,7k+1, 5, Pk+1)- The transmission of nnz; chunk to the computing
workers is done in a sequential fashion.

The time required for the worker ¢ to perform the task;, in a single iteration, is defined as:

task;
TComp; = % (4)

where,
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IMPLEMENTATION AND PERFORMANCE OF CG METHOD 9

task; = ZPCLW(U,O%Ik+1,7’k+1,5apk+1) (5)

In CG, there are two types of communication delays: master-workers communications delay
and inter-workers communications delay.

The master-workers communications delay, denoted by T'Comim,,, is obtained by the
following formula:

TCommyw = TCommpn: + kmaz * TCOMMNrm(ry)
+TCommy,, (6)

where,

kmae 18 the number of maximum iterations performed to reach the final solution when
running the CG.

TCommy,y,, is the time spent by the master sending nnz; to every computing worker i. It
is obtained by the following formula:

TCommyy,, = N xTCommy,., (7)
nnz;
= N _—

() ¥

TCommyorm(rk) is the communication time spent by the computing workers
communicating the value Norm(ry) to the master within the iteration k. All the computing
workers send their their data simultaneously on the network. However, as there is no
synchronized clock and the start of sending data on each computing worker cannot be
comparable, then the time of communicating data over the network is determined by the
finishing time of the last computing worker i (i =1,...,N) sending its value of r; to the
master. Consequently, we obtain the following formula:

TCommpyorm(rk) = Mazimum(TComy .,
TCommagy, ...,
TCommyyy, ...,
TCommp fr) (9)

where,

TComyy, is the finishing time of sending the scalar Norm(r) from the computing worker ¢
to the master.

TCommyy, is the spent to communicate the vector xjy from the computing workers to the
master in the last iteration.

TCommg, = Mazimum(TCom s,
TCommafy, ..., TCommyyy, ...,
TCommpy ) (10)

where,

TCommyy, is the finishing time of sending the elements of the vectors = from the computing
worker ¢ to the master.

The inter-workers communications delay, denoted by T'Comm,,,, is obtained by the
following formula:
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10 DISTRIBUTED CG METHOD

TCommuyw = kmae(TCommpgri(a)
+TCommpgry(p)
+T'Commpari(p,)) (11)

where, TCommpgri(a) is the time to distribute part of the numerator and denumerator of
a from each computing worker to all other computing workers. T'Comm p,,i(g) is the time
to distribute part of the numerator and denumerator of 3 from each computing worker to
all other computing workers. And, TCommpg(p,) is the time to distribute the part of the
vector py from each computing worker to all other computing workers in a single iteration. The
numerator and the denumerators are of scalars type. The number of elements of py, to exchange
among the workers is dependent on the matrix distribution policy of the CG. In addition,
this communication cost depends on whether there is an overlap between communication and
computation on each computing worker and the percentage of this overlap. In the next sections,
we explore different algorithms and their impact on this communication cost.

7. RELATIONSHIP BETWEEN WORKLOAD AND MATRIX DOMAIN
DECOMPOSITION

A blind decomposition of the matrix equally over the number of available computing workers,
whether horizontally or vertically, may not provide a load balanced distribution of the workload
assigned to each computing worker in each iteration of the CG method. Depending on the
degree of sparseness of the matrix, some rows may have more or less non-zero elements than
other rows. The total number of arithmetic operations required to multiply a matrix A(n,n)
by a vector p, TN AO(Ap), is equal to:

n
TNAO(Ap) =2 (m;) —n i=1,..,n (12)
i=1

where,

m; is the number of non-zero elements in each row i of the matrix A.

To identify equal chunk of computation, we identify a relationship between a workload and
the indices of the rows that should be assigned to each computing worker. A row index k
is a row number. Each row of a matrix A(n,n) has a number k, 1 < k < n, where n is the
number of rows for the matrix A. For example, k = 1 defines the row number 1 of the matrix
A. The main goal is to identify equal parts of computation to be distributed to all the workers
of the system. We define the cumulative workload W1l : k] as the total number of arithmetic
operations needed to multiply the sub matrix A(k,n) by the vector p for all i, 1 <i <k.
Based on eq. 12, we obtain the following equation, which defines a relationship between the
cumulative workload the & indices:

WL : k] :2i(mi)—k k=1,..n (13)

The number of non-zero elements corresponding to a cumulative workload W1, k] can be
obtained by the following equation:

nnz = M +1 (14)

Based on eq. 13 and eq. 14, we obtain the following equation:

k=2nnz—WIl: k| (15)

The above equation gives the row-index of a matrix, based on cumulative value of workloads.
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IMPLEMENTATION AND PERFORMANCE OF CG METHOD 11

8. LOAD BALANCED DISTRIBUTION OF THE CG METHOD

Our objective is to balance the CG method workload over all the processors of the system.
An algorithm is needed to equally distribute the calculations to be performed without much
overhead in communication. The complexity analysis shows that the most consuming part of
the CG algorithm lies in the matrix-vector multiplications. An algorithm is needed to equally
distribute the calculations to be performed. Our load balancing model calculates the total
work required to be conducted (Equation 12) and distributes it to the number of available
computing workers in the system according to a certain ratio. This ratio could be denoted as
Work Per Unit (W PU). Each worker calculates a part of the resultant vector so that the work
done by each worker is the same. If the computing resources are homogeneous, then W PU is
the ratio of the total workload to the number of available workers in the system: T]\J’\}“O. In case
of heteregeneous resources, the computing performance of every computing worker involved
in the computation of the distributed CG should be taken into account in the load-balanced
approach. Let us denote by nnz; = WPU[i], the number of non-zero elements of the matrix
that should be distributed to each computing resource i. To have a load balanced distributed
CG on heteregeneous resources, the following formula should hold when running the operations
on computing workers:

e N L R U N L i=1,...n (16)
p p2 i Hn

where, nnz; (1 <14 <mn) is the number of non-zero elements that should be distributed to
each computing resource.
Also, we have:

n
nnz:Znnzi i=1,..,n (17)
i=1

Based on Equations 16 and 17, the number of non-zero elements to be distributed to the
first computing woker of computing power p is obtained by the followng formula:

nnz

27';1 i
T =

(18)

nnzy =

Based on Equations 16 and 18, the number of non-zero elements to be distributed to the
remaining computing workers of computing powr p; (i =1,...,n) is given by the following
formula:

nnz; = &nnzl i1=2,..,n (19)
M1

The formula for calculating the end index k& of the matrix block assigned to each worker
accepts the value W1 : k], which is the cumulative value of the workloads, W's, of the previous
assignments to other workers, and returns the value of k based on Equation 15. As shown in
the pseudo code below, W PU is the unit of load that should be distributed to each computing
worker, while totalwork is that total load of the matrix-vector multiplication.
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12 DISTRIBUTED CG METHOD

LOADBALANCE(int * workers, int * wpu, int nnz, int * m)
1 > Compute the total work to be done

int totalwork = 0, temp = 0, work = 0,

i=1,k=0,size =0,

fori=1toi=n
do totalwork = totalwork 4+ mli]; § = i+1;

S Tk W N

7 totalwork = totalwork -n;

8 =0
9 while work <= totalwork — 1
10 do
11 > The cumulative workload
12 > of previous assignments
13 Work = work + wpuli];
14 k = 2nnz-Work;
15 > Each worker holds the end index
16 > of the matrix chunk that is to be
17 > distributed to worker][i]
18 end-row-orker[i]=k;
19 i =1i+1;

The decomposition of the vectors z, r, and p follows the decomposition of the matrix A(1,n).
Consequently, the index k, calculated by the equation eq. 15 is used to calculate the number
of elements of the vector x, r, and p, which are computed by each computing worker during
an iteration. consequently, every computing worker computes a chunk of z, r, and p in step
10, step 11, and step 14 respectively.

9. INTER-WORKERS COMMUNICATIONS DELAY

As described previously, one of the main challenges of a distributed CG is the inter-workers
communications delay. This delay adds up to the total execution time of a distributed CG.
As mentioned in section 6, the inter-workers communications delay consists of exchanging
over the network the scalar values (Part(,), Parts)), and the vector p in each iteration
of a CG distributed algorithm. Step 14 shows that a new p is calculated in each iteration
and it is used in calculating the local matrix-vector-multiplication v (step 8) in the next
iteration. Consequently, a new p has to be made available to all the computing workers for
a next iteration, which requires inter-workers communication. Table I shows the results of
experiments we conducted on our Cloud of 16 Intel Xeon machines connected by Infiniband
switch, making a total of 128 cores. In those experiments, we send a simultaneous broadcast
from a computing core to all other computing cores and we measure the communication cost
from one of the computing workers. We repeated the experiments 100 times and we have taken
the average. The experiments show that for large problem sizes, the communication cost of
a scalar is minimal compared to the communication cost of a vector as the vector size to
communicate becomes large. Consequently, in this study, we then focus on the communication
cost induced by communicating the vector p among the workers. The rest of this section
describes 2 implementation strategies and their impact on the communication cost. In both
strategies, the matrix is decomposed based on the load-balanced approach described in section
8.
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Experimental Simultaneous Broadcast of a Scalar vis-a-vis a Vector
Experiment Time in Seconds
Broadcast of a | 0.0.0002671
scalar

Broadcast of a vec- | 0.0002716

tor of size 10

Broadcast of a vec- | 0.0003606

tor of size 100

Broadcast of a vec- | 0.0004491

tor of size 1000

Broadcast of a vec- | 0.0011064

tor of size 10000

Broadcast of a vec- | 0.005383

tor of size 100000

Broadcast of a vec- | 0.0500894

tor of size 1000000

9.1. Communication and Computation Non-Overlap-Based Strategy

Figure 4 shows an example of a matrix which is decomposed over 4 computing workers. Our
first approach for exchanging p is for every computing worker to gather a vector p of size [;
(1 <i < N)from (N — 1) computing workers participating in the CG distributed computation;
i.e., a broadcast approach. [; is equal to the number of rows associated to each computing
worker based on the load-balanced approach. The total communication cost is as follows:

i=1,..

TCommy, = TBcast(l;) * kmax
(I R 7 LA ]
'i et
0 [
1 Laa -
- = -
B RRL. % L
. ) - 1l
- 1 .y
; . :;.r khl . ‘-\. -:\-.l .T
2 o -
i do T
. -
H rd LS
- - *
) . .-1!'_".\,
" woom
" .|| t 1-1 Ll II\'l

N (20)

Figure 4. Data Distribution of a Matrix on 4 Computing Workers
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9.2. Communication and Computation Overlap-Based Strategy

In this algorithm, a computing worker uses asynchronous communication, in which a vector p
is sent in a non-blocking way, allowing a computing worker to complete the rest of the iteration.
In this approach, in the worst case, the cost of communication is:

TComm, = T(IReceive(l;)+ Wait)
#(N = 1) % kpaw i =1,.., N (21)

where I Receive represents asynchronous reception of the data by a computing worker, and
Wait represents the waiting time by a worker to receive the data if the data has not been
received in the receiver buffer yet.

However, by using simply asynchronous communication, a computing worker still cannot
start its next iteration unless all the elements of the vector p have been received from (N — 1)
computing workers. Therefore, we introduce a new overlap approach, in which to make use of
the idle communication time while p is communicated to perform part of the vector-matrix
multiplication in a next iteration. In this approach, we first divide the matrix based on our load-
balanced approach. Then locally, within every computing worker, the local matrix is divided
into vertical blocks to accommodate the communication-computation overlap. The vertical
division uses the row indices k£ found in horizontal distribution. Figure 5 shows an example of
the decomposition, where every computing worker splits its local matrix into N = 4 vertical
blocks.

J

Figure 5. Data Decomposition to Accommodate Communication-Computation Overlap

The algorithm works as follows. For the entire local matrix-vector-multiplication, every
computing worker needs the whole p vector. Every computing worker divides its local matrix-
vector-multiplication into IV steps. Initially, every computing worker has its own part of the
vector p. In each step, before starting the local matrix-vector-multiplication, a computing
worker sends its own part of the vector p, in a non-blocking communication, to the left
neighbor and simultaneously receive part of the vector p from right neighbor forming a ring of
communication. The communication takes place in the form of a ring as presented in Figure 6
for a set of 4 communicating computing workers. Initially, computing worker Rankq has chunk
Po. Consequently, computing worker Rankg sends pg to computing worker Ranks. Likewise,
computing worker Rank; has chunk p;, then Rank; sends chunk p; to computing worker
Rankg. Similarity, computing worker Ranks has chunk ps, so Ranks sends ps to computing

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Ezper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe



IMPLEMENTATION AND PERFORMANCE OF CG METHOD 15

worker Rank;. Finally, computing worker Ranks has chunk ps, which it sends to computing
worker Ranks

Figure 6. Ring-Based Communication for Communication-Computation Overlap Strategy

After initiating the communication, all the computing workers start the local matrix-vector
multiplication to find the vector v. The local matrix-vector multiplication starts on the block
number for which the computing worker has its own chunk of p. Figure 7 illustrates the
starting computational part in each computing worker. The local matrix-vector multiplication
is performed using the non-zero elements of the respective blocks, as illustrated in Figure 8.

Figure 7. Initialization of Computing in Communication-Computation Overlap Strategy

Before starting the next step of computation of its local matrix-vector multiplication, as
shown in Figure 9, every computing worker sends the chunk p received from the left neighbor
and receives the chunk p from the right neighbor which will be used for computing the matrix-
vector multiplication on the next vertical block, and the partial values of v computed in the
current step will be added to the values of v computed in the previous step. Figures 10 and
11 illustrate the remaining steps.
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rank 0 rank 1

rank 2 rank 3

Figure 9. Step 2 of Computation in Communication-Computation Overlap Strategy

10. RELATED WORKS

Several algorithms have been published to parallelize CG [18], [19], [20] [21], [11], [12]. In
[18], [19], [20] and [21], algorithms have been implemented on top of a specialized event-
driven multi-threaded platform. In [11] and [12], algorithms have been implemented on top
of a distributed shared memory cluster. [22] introduces a parallel algorithm for matrix-vector
multiplication, but considers a particular matrix with regular sparsity and studies the impact
of mesh partitioning on the performance. [25] and [27] introduce data decomposition strategies
for matrix-vector multiplications to increase CG efficiency on hypercubes and mesh networks
for unstructured sparse matrix. Blocks of matrix are assigned to processors to perform partial
result of the matrix-vector multiplication. Non-zeros are transferred using storage techniques
of non-zeros in a vector. But the algorithm does not consider a load-balanced distribution of
the operations of the matrix-vector multiplication, the communication costs involved in the
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rank 0 rank 1

Figure 10. Step 3 of Computation in Communication-Computation Overlap Strategy

rank 2 rank 3
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»
< - == IR E
i 3 — S
b ; g A
¥ A p v A 4
: A E

rank 2 rank 3

Figure 11. Step 4 of Computation in Communication-Computation Overlap Strategy

global CG method. Our experiments with the broadcast-based approach give the same results
as in [25]; i.e., the approach does not scale with the increasing number of computing workers.
In [25], a ring-based overlap mechanism is used for global summation within the CG method,
a speedup of of 2.5 was obtained on 128 cores compared to the original NAS. [26] presents
communication-avoiding algorithms to decrease communication costs of applications. We used
a ring-based overlap mechanism for collecting a vector within the CG method, giving a speedup
of 1,157.7 on 128 cores compared to NAS.

[28] and [29] divide the overall CG algorithm into blocks of algorithms to reduce
communication, but did not address the cost of communication among the blocks. Jordan et
al. [23] reported experiments where matrix-vector multiplication loads are distributed based
on processors speed in a heterogeneous cluster, using a dense matrix. Other works concentrate
on the ways to store the non-zero values of a sparse matrix in the CG method. [30] produces
a speedup of 3.7876 when using 16 processors compared to the CG sequential execution.
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[24] is based on [23], but uses a special method for storing sparse coefficient matrices where
only non-zeros are stored taken into account during communication. The parallel algorithm
suggested by Kim et.al [10] explored the parallel conjugate gradient solver with both Jacobi
diagonal preconditioning and incomplete Cholesky factorization preconditioning on a number
of different meshfree analysis applications. They investigated the parallel performance of the
solver using a homogeneous cluster and obtained a speedup of 12 compared to sequential
execution in both cases. The cluster used consists of 12 processors.

11. PERFORMANCE ANALYSIS

In this section, we analyze the performance of our CG method parallel algorithms (broadcast
and overlap). We compare the performance of our overlap approach compared to the
NAS CG parallel benchmark [16]. We also report on the gains and losses obtained while
implementing and evaluating our parallel CG method algorithms on top of our Cloud
computing infrastructure. In terms of performance, though it could be expected that the
overlap approach will perform better than the broadcast approach, our experiments reveal the
speedup factor provided by our overlap technique compared to the broadcast technique.

11.1. Ezxperimental Environment

The experiments are conducted on a Cloud of 16 Xeon Intel Quad Core 5355 machines with
2.66 GHz CPUs. Each machine has a dual CPU. Each core has 4MB of cache, 1GB of memory,
2.66 x 4GFLOPS of peak performance. The machines are connected using an InfiniBand (IB)
standard network. The operating system used on the machines is Red Hat Enterprise Linux
Server release 5.2. The experiments are done using the parallel capabilities of a single multi-
core machine, and using a Cloud of machines. Message Passing Interface (Open MPI version
1.3.2) library is used for implementing the parallel CG. For the sake of comparison with MPI-
based NAS CG method parallel benchmark, the NPB3.2.1 version of the NAS code was used
to run both sequential execution of the CG method and the NAS parallel benchmark.

To analyze the performance of the parallel CG algorithms on a heteregeneous environment,
we run experiments using a heteregeneous Cloud made of 2 AMD Opteron processors and 7
Intel Xeon processors. The AMD Opteron Processor model is 252 with 2.59 GHz dual CPU
single core. Each core has 1MB of cache, and 2 GB of memory. 5 out of the 7 Intel machines
have Intel Xeon CPU of 3.06 GHz, dual CPU, dual core. Each core has 512KB of cache and
4GB of memory. Let us denote those Intel machines by Intel Typel. 1 out of 7 Intel machines
has Intel Xeon CPU of 3.06 GHz with dual CPU, single core. Each core has 512 KB of cache
and 4 GB of memory. Let us denote this Intel machine by Intel Type2. The AMD Opteron
machines along with those 6 Intel machines described earlier are connected to each others
via one hop 1Gb/second switch, those are connected to another Intel machine located in the
shared LAN network via two-hop connectivity of 1Gbits/second. That Intel machine has Xeon
CPU of 3.0 GHz and it has a single CPU, dual core. Let us denote that Intel machine by Intel
Type3. Each core has 4MB of cache and 2GB of memory. The Linux Suse 3.1.0. was used. 16
computing workers (cores) from the heteregeneous platform were used to run the experiments.
The workers are mapped to their corresponding machines as shown in Table II. Figure 12
shows the performance of the machines in terms of MFlops, measured by running the class C
of the NAS benchmark on the platform.

11.2. Experiments

The speedup of the parallel CG versus its sequential execution is measured. In our experiments,
one core acts as a master which distributes the tasks to the other cores that we call workers.
The overall execution time for CG in a parallel environment is the elapsed time when master
starts distributing the matrix till the final results are received by the master from the workers.
The gettimeofday function is used to compute the elapsed time on the master. In the sequential
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Table II. Heteregeneous Computing Workers Forming the Experimental Heteregeneous Testbed

Computing Worker Machine
CPU Memory Cache
Type Size Size
CWO0 and CW1 AMD 2GB 1MB
Opteron
Processor
CW2 and CW3 AMD 2GB 1MB
Opteron
Processor
CW4 and CW5 Intel 4GB 512KB
Type 1
CW6 and CW7 Intel 4GB 512KB
Type 1
CW8 and CW9 Intel 4GB 512KB
Type 1
CW10 Intel 4GB 512KB
Type 3
CW11 and CW12 Intel 4GB 512KB
Type 1
CW13 and CW14 Intel 4GB 512KB
Type 1
CW15 Intel 4GB 512KB
Type 2
350
300
o B0
_g- 200
E 150 - B Machine
100 - Performance
50
. H N

AMD  Intel  Intel Intel
Typel Type2 Typed

Figure 12. Computing performance of our experimental heteregeneous platform.

execution case, the gettimeofday function is used as well to compute the overall run time. In
all our experiments, each experiment was run 100 times and the average was computed.

The experiments use different matrix sizes of A (total of 5 experiments or runs as shown
in Table III to assess the impact of the matrix size on the performance. The matrix sizes are
the same used by the NAS parallel CG benchmark. We also use the same sparsity patterns as
implemented by NAS. In each run on the homogeneous platform, the parallel CG is measured
by horizontally scaling the number of cores up to 128 cores. On the heteregeneous platform,
each run has executed using the load-balanced approach. In the load-balanced approach, we
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Table III. Experimental Runs

Run Workload
Benchmark Matrix Number
Name Size(A) of Non-
Zero
Elements
1 S 1400 78,148
2 W 7000 508,402
3 A 14000 1853104
4 B 75000 13,708,072
5 C 150000 36,121,058

used our formulas to calculate the number of non-zero elements that should be distributed to
each worker based on its available computing power.

To measure the computation workload distribution among the computing workers, the
average execution time is measured on each computing worker. The average communication
time; i.e., the data transfer time between the master and the computing worker, as well as
among the computing workers (inter-communication), is also measured on each computing
worker. In the nonparallel scenario, the gettimeofday function is used to compute the time
elapsed. In the parallel scenarios, the gettimeofday function is used as well to compute the
CG method time elapsed from the master side, as well as the time elapsed on each computing
worker.

11.3. Ezxperimental Results Analysis

In devising a parallel algorithm for the CG method to be distributed among the processing units
of the system, the following requirements are considered. These requirement considerations
have an effect on the experimental results obtained.

a) Load Balancing: One of our objectives is to balance the CG method workload over all the
computing workers of the system. An algorithm is needed to distribute the calculations
to be performed without much overhead in communication.

b) Parallelism: The Communication induced by the distribution strategy between the
computing workers should be minimal or absent. Our parallel algorithm do not include
any communication overhead. We allocate to every computing worker a part of the total
workload and the result is transferred from a computing worker to the master.

c) Features of the CG Method: The CG method presents the following features that have to
be considered when developing the parallel algorithm:

e The CG method presents global dependencies between its steps within a single
iteration. These dependencies introduce inter-computing-workers communication
in a parallel CG method, and consequently increase its total execution time. In our
implementation, we use an overlap strategy of communication and computation.

e The CG method reaches a final solution when the global vector r reaches a minimum
value. In our implementation, the master coordinates that process, which impose
an extra overhead in communication in every iteration.

d) Portability: Portability is required in 2-fold:

e From an algorithm perspective, we tried to design a distribution strategy and an
overlap scheme which are quite general and applicable to different applications
presenting the same nature of problems as the CG method.
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e From a software perspective, we use MPI library to implement our approaches,
which is a very well known and a standard library used for distributed and parallel
implementations. We do not want to use any specialized hardware or software. We
believe this is consistent with Cloud perspectives, as Cloud software developers
and users can develop and run their applications on a generic public Cloud, using
standard libraries and interfaces.

At the functional level, while it looks quite intuitive that the overlap approach for inter-
computing workers communication will achieve better performance than a broadcast approach,
yet our first attempt was to use the broadcast approach, as the corresponding programming
model is simple and straightforward. However, the broadcast cost increases with the data size
to broadcast; i.e., the size of the vector p, and the increasing number of computing workers,
and makes the broadcast approach inefficient. On the homogeneous platform,an inspection
of the overall speedup of the broadcast-based approach vis-a-vis the parallel version of the
NAS benchmark (Figure 13) shows that with the increasing number of computing workers,
the broadcast-based approach performs better than NAS for small matrix sizes (66 times
better for benchmark S and 30 times better for benchmark W). However, the speedup of
the broadcast-based approach declines considerably for large matrix sizes and for a large
number of computing workers, e.g., the broadcast-based approach speedup is only only 3.8
times better than NAS for benchmark B and 4.6 times better than NAS for benchmark C
using 128 computing workers. Furthermore, in our experiments the communication cost is
load balanced over all the computing workers in case of a homogeneous platform, as shown in
Figures 14 for runs which use 16 computing workers.

The increase in communication cost of the broadcast approach has led us to devise a
communication-computation overlap strategy in which the communication of the vector p from
one computing worker to all other computing workers is done in parallel to the computation of
the local matrix-vector multiplication that has to be performed by every computing worker. An
inspection of the overall speedup, obtained by the overlap method vis-a-vis broadcast-based
approach (Figure 15, shows that the overlap-based approach performs 24.2 times better than
the broadcast-based approach for big matrix sizes and large number of computing workers
involved in the computation. Figure 16 shows a comparison of performance of the overall
execution times of the overlap-based approach, the broadcast-based approach and the NAS
benchmark. As expected, the overlap-based approach has in general better performance than
the cited algorithms, as the cost of communication is hidden. As Figure 17 shows, the overlap-
based approach performs 169.6 times better and 144.4 times better than NAS benchmark for
classes B and C respectively. However, for small matrix sizes (sizes S and W), the broadcast
approach performs better than the overlap approach. The performance of the overlap-based
approach decreases till 0.14, for class S on 128 computing workers, compared to the broadcast
approach, as the computation performed by every computing working in the overlap approach,
as the computation load on a computing worker does not overweight the communication
cost induced by sending a vector over the network from that computing worker. In other
words, the computing workers spend much time waiting for the communication to take place
than computing. In summary, the overlap-based approach is not much interesting for small
matrix sizes and a big number number of computing worker compared to the NAS distributed
benchmark. However, the overlap-based approach 1,157.7 times faster than the NAS sequential
execution for matrix of size C' using 128 computing workers. The broadcast-based distributed
algorithm is 50.8 times faster than the NAS sequential execution for matrix of size C' using
128 computing workers. However, in addition to the advantages of the overlap-based approach
for large matrix sizes, this super-linear speedup is explained by the fact that for measuring
the sequential execution of the NAS benchmark, we used its parallel version with NPROCS=1
which introduces some overhead compared to a true serial version.

Regarding load balancing over the computing workers, Figure 18 shows that the CG load is
equally distributed over the computing workers. In this load-balanced-based approach, during
experiments, we notice small discrepancies among the workloads of the computing workers.
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Table IV. Total Execution Time in Seconds of the Distributed CG Method on our Heteregeneous
Testbed
Experiment Matrix Size
Class S Class W Class A Class B Class C
0.058722533| 0.151632667| 0.265799667| 7.59671 21.21196667
0.191004667| 3.959763333|| 7.825793333

Broadcast-Based CG Method
Overlap-Based CG Method

0.041212767

0.104833333

3.653333333

7.093333333

214.3366667

406.8833333

0.88

NAS Benchmark

This is due to the rounding we do to each resultant chunk allocated to each computing worker
to ensure that a matrix row would not be divided among the computing workers. Dividing
a row among computing workers will impose exchange of messages for calculating a local

matrix-vector multiplication, and thus increase the CG method communication cost.
On a heteregeneous platform, Table IV shows that the overlap approach is performing

2.7 times better than the broadcast-based approach, and 51.99 times better than the NAS

benchmark for the class C matrix size.

Overall Speedup: Broadcast vis-a-vis NAS

N\ J' ~+Broadcast Speedup(S)

,' -#-Broadcast Speedup(W)
i Broadcast Speedup(A)
7 —=Broadcast Speedup(B)
Il =+=Broadcast Speedup(C)

16 32 64 128

Number of Computing Workers

Figure 13. Overall speedup of broadcast-based approach vis-a-vis NAS distributed benchmark.

12. CONCLUSION

CG method is a mathematical tool used in a wide range of engineering and sciences
applications. In particular, it is used because of its rapid convergence to solution. However, CG
method is computationally challenging, in particular when the matrix becomes more dense. In
this work, we studied the complexity of the CG method in terms of number and introduced
a dependency graph among its different computing components. This study helped us to
identify exactly the number of operations involved in a CG method and devise distributed
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Distribution of Communication Time Across Computing Workers in the
Broadcast-Based Approach
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Figure 14. Distribution of communication time across computing workers for broadcast-based
approach.

Overall Speedup: Overlap vis-a-vis Broadcast
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Figure 15. Overall speedup of overlap-based approach vis-a-vis broadcast-based approach.

algorithms with a communication approach to increase the speedup of CG distributed
algorithms. We then implemented two distributed algorithms for the CG method on a Cloud
Computing infrastructure, one which uses the broadcast-based approach; and one that uses

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Ezper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe



24 DISTRIBUTED CG METHOD
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Figure 16. Comparison of performance of overlap-based approach, broadcast-based approach, and
NAS distributed benchmark for the CG method.

an overlap-based approach where communication overlaps computation. In the first algorithm,
the broadcast-based approach, each computing worker computes its own part of the global
computation and broadcast the results to all other computing workers. In the second algorithm,
the overlap-based approach algorithm, each computing worker computes part of the resultant
vector and sends the vector needed by other computing workers to the neighbor computing
worker, in a ring fashion, before continuing the next step of its current computation. The
broadcast-based approach gives significant results compared to the sequential approach. By
the end of the computation, the vector would have reached every other computing worker. Both
algorithm follows a load-balanced distribution approach for the computation. Both distributed
algorithms give significant results compared to the non-distributed algorithm in our Cloud
environment. The broadcast-based algorithm is 245.4 times faster than the sequential algorithm
using 64 computing workers for matrix of size C'. This speedup decreases to reach 50.8 using
128 computing workers for the same matrix size, due to the broadcast cost which increases
when the number of computing workers involved in the computation of CG method increases.
The overlap-based algorithm is 1,157.7 times faster than the sequential algorithm for a matrix
of size C and using 128 computing workers.

Our experimental results from distributed algorithms show a fairly load-balanced
distribution of workload across available computing workers. This is thanks to the distribution
algorithm which distributes to its best the workload equally between the different computing
workers. However, the load balancing does not achieve exact distribution. This is due to the
fact that discrete work units are supposed to be allocated; hence the workload can be lopsided if
the work units are not divisible by the number of available computing workers. Moreover, when

the terminal indices of the work units are calculated by our formulas, those terminal indices
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Overall Speedup: Overlap vis-a-vis NAS
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Figure 17. Overall speedup of overlap-based approach vis-a-vis NAS distributed benchmark.

Ditribution of Execution Time Taken
Across Computing Workers using Load Balanced-Based Approach
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Figure 18. Distribution of execution time across computing workers using our load-balanced-based
approach.

include the load associated to them; i.e., for the CG method, a terminal index represents a
row index for which all the non-zero elements should be associated.
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Speedup of Broaddcast & Overlap vis-a-vis Sequential NAS
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Figure 19. Speedup of the broadcast-based approach and the overlap-based approach vis-a-vis NAS
sequential execution with increased number of computing workers and increased matrix sizes.
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