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Abstract. Super-scalar, out-of-order processors that can have tens of
read and write requests in the execution window place significant de-
mands on Memory Level Parallelism (MLP). Multi- and many-cores with
shared parallel caches further increase MLP demand. Current cache hi-
erarchies however have been unable to keep up with this trend, with
modern designs allowing only 4-16 concurrent cache misses. This discon-
nect is exacerbated by recent highly parallel architectures (e.g. GPUs)
where power and area per-core budget favor numerous lighter cores with
less resources, further reducing support for MLP on a per-core basis.
Support for hardware and software prefetch increases MLP pressure since
these techniques overlap multiple memory requests with existing compu-
tation. In this paper, we propose and evaluate a novel Resource-Aware
Prefetching (RAP) compiler algorithm that is aware of the number of
simultaneous prefetches supported, and optimized for the same. We im-
plemented our algorithm in a GCC-derived compiler and evaluated its
performance using an emerging fine-grained many-core architecture. Our
results show that the RAP algorithm outperforms a well-known loop
prefetching algorithm by up to 40.15% in run-time on average across
benchmarks and the state-of-the art GCC implementation by up to
34.79%, depending upon hardware configuration. Moreover, we compare
the RAP algorithm with a simple hardware prefetching mechanism, and
show run-time improvements of up to 24.61%.
To demonstrate the robustness of our approach, we conduct a design-
space exploration (DSE) for the considered target architecture by varying
(i) the amount of chip resources designated for per-core prefetch storage
and (ii) off-chip bandwidth. We show that the RAP algorithm is robust
in that it improves performance across all design points considered. We
also identify the Pareto-optimal hardware-software configuration which
delivers 53.66% run-time improvement on average while using only 5.47%
more chip area than the bare-bones design.

1 Introduction

Memory systems have been under a lot of pressure to keep up with the increas-
ing demand for parallelism coming from every new generation of microproces-
sors. Super-scalar, out-of-order processors can have a large number of memory



operations in flight in the execution window at one time. In simultaneous multi-
threading (SMT) architectures, as well as multicores and manycores, the demand
for Memory-Level Parallelism (MLP) has further increased. This has put addi-
tional pressure for memory systems to support numerous concurrent memory
requests.

Current cache hierarchy designs support only limited amounts of MLP due
to the high cost in terms of chip area and energy use. Existing architectures
employ lock-up free caches (e.g. [30]) to avoid stalling the CPU and allow the
cache miss to be serviced in the background. Fig. 1 depicts a cache system
and its attached Miss Handling Architectures (MHA). This consists of several
Miss Information/Status Holding Register (MSHR) files, and is responsible for
keeping track of the outstanding concurrent misses. To meet the demand for
high bandwidth and low latency, each MSHR has its own comparator, and is a
small fully associative cache. The maximum number of outstanding cache misses
the system supports is limited by the number of MSHR entries.
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Fig. 1. Miss Handling Architecture (MHA) for a banked cache system and the Miss
Information/Status Holding Register (MSHR) file

When a new request is received, all the comparators must be activated in
parallel in order to retrieve the corresponding entry in one clock cycle, leading
to high power consumption and area requirements. This severely limits the size
of the MSHR file that can be included, even for today’s large transistor bud-
gets. For example, the L1 cache of an Intel Pentium 4 processor supports only
8 outstanding misses [4]. For more recent AMD Opteron and Intel Core i7 ar-
chitectures, an empirical study showed that single thread performance does not
improve past 7 concurrent memory requests, suggesting that the same limitation
holds [25].

Currently, the two predominant paradigms of how single-chip processors are
built are:

1. Limited-scale multi-cores that replicate the single-processor model on one
die and strive to maintain backwards compatibility. They generally target
applications with low degrees of parallelism, programmed to take advantage
of local caches and limit expensive inter-core communication. Presently such
systems have 2-12 cores, each supporting coarse grained threads and they
are not expected to exceed a few tens of cores in the foreseeable future.
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2. Many-cores that are not typically confined to traditional architectures and
programming models, and use tens to hundreds of lightweight cores in order
to provide stronger speedups. The best known representatives of this class
are GPU architectures from NVIDIA and AMD, which are now increasingly
used for general-purpose computation that offer abundant parallelism and
can be effectively mapped to these GPUs. Other examples include the Sun
Niagara 2 [24] and the upcoming Intel Many Integrated Core (MIC) archi-
tecture. Research machines such as UT Austin’s TRIPS [9], MIT’s RAW
[28] (available commercially as the TILE architecture from Tilera [2]), and
UMD’s XMT [33, 36] are also examples of single-chip many-cores.

Traditional multi-cores in the first category use several methods to hide mem-
ory latency: out-of-order execution, advanced hardware prefetching mechanisms,
large per-core coherent caches, simultaneous multi-threading (SMT) etc. These
often mitigate the need for advanced software prefetching. Hence we do not target
traditional multicores. In contrast, in many-core architectures, these techniques
do not scale to the hundreds (and possibly thousands) of cores because of the
limited area and power resources available per core, leading to the urgent need
for alternative latency-hiding tools. In our work, we are focusing on this challeng-
ing, unsolved problem for a proposed high-risk, high-payoff research many-core
machine.

Many-cores are motivated by a variety of factors such as high scalability to
a large number of lightweight cores in a single chip, very low inter-core com-
munication latencies, high on-chip communication bandwidth, overcoming wire-
length restrictions at high clock speeds, and fast hardware-assisted inter-core
synchronization. Some many-core designs have demonstrated great results, far
exceeding the performance of traditional multi-cores for the same silicon area.
Such designs are an exciting new frontier in computer architecture, as evidenced
by commercial and research interest.

Regardless of the type or motivation, in all many-cores each lightweight core
has much smaller area than a traditional core. In terms of prefetching resources,
this has two repercussions: (i) the size (number of entries) of MSHR files is much
more constrained in a many-core due to area constraints; and (ii) the total energy
consumption of all MSHRs across cores in a processor is much higher than in a
traditional processor due to the larger number of cores, which further limits the
size of MSHRs. As a consequence it becomes crucial to carefully manage the use
of scarce MSHR resources for these architectures.

We present a new prefetching method called Resource-Aware Prefetching
(RAP) to manage MSHR resources carefully. It is mainly beneficial in many-cores
because of their limited MSHR file capacity. It can apply to traditional multi-
cores as well, but given their larger number of MSHR entries and their much
larger area and power budget for other latency tolerating tecniques mentioned
above, the run-time gains from RAP are likely to be very small, hence we do not
discuss those further.
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To evaluate the RAP algorithm, we are using XMT5 – a general-purpose
manycore architecture [23]. A recent study showed that when configured to use
the same chip area, XMT can outperform both an Intel Core 2 (speedups up
to 13.83x [6]), AMD Opteron (speedups up to 8.56x [36]) and also an NVIDIA
GTX280 GPU (speedups of up to 8.10x [5] on irregular workloads). The XMT
hardware design is simple and scalable, allowing researchers to easily understand
and tune architectural parameters. A highly configurable cycle-accurate simu-
lator and an open-source compiler are available, enabling us to implement and
evaluate our optimizations on different hardware configurations. An overview of
the XMT platform is presented in Section 4. An alternate evaluation platform
would have been GPUs from NVIDIA or AMD; however they are not used be-
cause in the current generation there is no true support for software prefetching
in these platforms. Moreover, the vendors do not disclose architecture or com-
piler details, making it difficult to implement and evaluate hardware or software
improvements.

As an extension of our evaluation, we investigate the ability of the RAP
algorithm to adapt to the available amount of prefetching hardware resources
for a particular target platform. To accomplish that, we conducted a design-space
exploration (DSE) of the XMT architecture in which we varied the size of the
MSHR file in order to accommodate more simultaneous prefetch instructions.
For a more complete DSE, we also varied the resources allocated for off-chip
bandwidth (i.e. memory controllers and DRAM channels), which is the other
resource closely related to memory-level parallelism. We present our extensive
case study in Section 6 and show that the RAP algorithm robustly improves
performance on all evaluated design space points and across a heterogeneous set
of benchmarks. In addition, we show that a non-obvious choice for allocating the
available chip area between the two resources provides the best performance, and
we make recommendations to the hardware designers for future improvements.

Our main contributions are:

1. Resource-aware compiler loop prefetching algorithm. We propose an enhanced
compiler loop prefetching algorithm and compare it with existing solutions.
We show that by providing the compiler with accurate information about
the hardware, we can improve the prefetch performance on average by up to
36.7% over a hardware-oblivious one, depending on the hardware configura-
tion.

2. Empirical design space exploration We scale two parameters of the archi-
tecture: (i) off-chip DRAM bandwidth and (ii) capacity of MSHR files, and
combine performance results with area information to determine the Pareto-
optimal configurations. These are design points such that no other configura-
tions have better performance for a lower area. Such configurations represent
meaningful trade-offs for the hardware designer; all others can be eliminated.
We maintain our focus on the memory sub-system and pay special attention
to both software and hardware support for data prefetching. For example,

5 This refers to the XMT architecture developed at University of Maryland and not
the Cray XMT system.
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our findings show that a 64-processor configuration with 2 DRAM channels
and 8-word per-TCU prefetch buffer unit capacity outperforms a similar con-
figuration with 8 DRAM channels and 4-word prefetch buffer units by 4%
on average, while actually using 4.3% less chip area.

The remainder of this paper is organized as follows. In Section 2 we review
existing compiler prefetching approaches and identify their shortcomings, and
in Section 3 we present our enhanced Resource-Aware Prefetching (RAP) algo-
rithm. Section 4 introduces XMT, our experimental platform, which is then used
in Section 5 to evaluate the performance improvements of our RAP implementa-
tion. In Section 6 we present the findings of the Design-Space Exploration study,
followed by a related work survey in Section 7 and our conclusions in Section 8.

2 Existing Software Prefetching Methods

Mowry et. al [21] introduced a compiler algorithm to insert prefetch instructions
into scientific applications that operate on dense matrices. Consider the code
in Fig. 2 as our running example. Fig. 2(a) shows the original program code.
In the figure, assume that the matrices A, B and C contain double precision
floating point elements (64 bits) and our hypothetical system has a cache line
of 16 bytes; thus two doubles fit per cache line. Also, assume that the cache
miss latency is MissLatency = 50 clock cycles. Note that this simplified model,
assuming only one level of cache and a fixed cache miss latency, is widely used in
prefetching literature; accurately modeling the cache memory hierarchy in the
compiler is often too complex to be viable. Moreover, since the cache is usually a
system-wide shared resource, it is impossible to model interference from external
sources such as other running processes. Mowry’s algorithm proceeds as follows:

Algorithm 1 Mowry’s Loop Prefetching

I. For each static affine array reference, use locality analysis to determine which
dynamic accesses are likely to suffer cache misses and therefore should be
prefetched. For the code in Fig. 2(a), one cache line can hold two array el-
ements, and thus every second dynamic access for the A[i], B[i] and C[i]

references will be a cache miss and requires a prefetch instruction.

II. Isolate the predicted dynamic miss instances using loop-splitting techniques
such as peeling, unrolling, and strip-mining. This avoids the overhead of adding
conditional statements for prefetching to the loop bodies. This yields the code
in Fig. 2(b), where the loop has been unrolled two-fold and the last 6 iterations
have been pulled out in a separate loop.

III. Schedule prefetches the proper amount of time in advance using software
pipelining (by using the computed necessary prefetch distance), where the com-
putation of one or more iterations is overlapped with prefetches for a future
iteration. The prefetch distance is computed so that all latency can be hidden
completely, using the formula:

PrefDistance =

⌈

MissLatency

IterationTime

⌉

(1)

5



IterationTime is the estimated running time of the shortest path through the
loop when software prefetching is enabled. Assume for example that
IterationTime = 20 clock cycles (after unrolling), and thus PrefDistance =
⌈50/20⌉ = 3 iterations. The code in Fig. 2(c) contains the transformed code,
where prefetches for the references to the A, B and C arrays have been inserted
three iterations in advance.

Mowry’s algorithm as presented successfully filters out most unnecessary
prefetch instructions and significantly reduces the instruction overheads. How-
ever, it does not take into consideration the number of in-flight memory requests
supported by the hardware. The maximum number of prefetch requests active
at any time can be computed using:

MaxRequests = NumRefs × PrefDistance (2)

where NumRefs represents the number of static references that require prefetch-
ing. Going back to the code in Fig. 2(c), NumRefs = 3 since the references to
A[i], B[i] and C[i] will cause a cache miss at each iteration and need prefetch-
ing, leading to MaxRequests = 3 × 3 = 9. Suppose that our architecture has 6
registers in the MSHR file. After the first six prefetch requests have been issued,
when the next request arrives at the MHA unit, one of the following can happen,
depending on the hardware implementation:

1. The additional request is silently dropped, and nothing is sent to the lower
levels of the memory hierarchy. This causes the program to slow down, since
it incurs all the instruction overheads of prefetching, but none of the benefits
– the cache miss was not avoided.

2. The MHA does not accept the prefetch request, stalling the issuing CPU until
one MSHR becomes available (which happens when one request returns from
DRAM or lower cache level). Stalling the CPU was exactly what prefetching
was aiming to avoid, and thus the benefits of prefetching are again lost,
leaving only the overheads.

To summarize, overflowing the MSHR file is detrimental in all cases, and needs
to be addressed by all prefetching approaches. The code in Fig. 2(c), which is the
outcome of Mowry’s algorithm, fails to address this issue. We discuss proposed
improvements next.

GCC (GNU Compiler Collection), a state-of-the art open source compiler
which supports a wide range of architectures and programming languages, in-
cludes an implementation of Mowry’s algorithm for loop prefetching. The GCC
algorithm extends it further by introducing the notion of a platform-specific
number of PrefetchSlots. This is used to limit the number of prefetches that
can be in flight at the same time. As far as we know, GCC’s method is the
only software prefetching algorithm that attempts to limit the number of in-
flight prefetches based on hardware limitations. After performing the same steps
1-2 as above, the GCC algorithm starts scheduling prefetches for all the refer-
ences in program order. One prefetch instruction issued PrefDistance iterations
in advance of the reference causes the number of available prefetch slots to be
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(a)

for (i=0;i<1000;i++)

A[i] = B[i] + C[i];

(b)

for (i=0;i<994;i += 2 ) { /* Unrolled */

A[i] = B[i] + C[i];

A[i+1] = B[i+1] + C[i+1];

}

/* Last three iterations peeled */

for (i=994;i<1000;i++)

A[i] = B[i] + C[i];

(c)

for (i=0;i<994;i += 2 ) {

/* prefetch 3 iterations in advance */

prefetch(A[i+6]);

prefetch(B[i+6]);

prefetch(C[i+6]);

A[i] = B[i] + C[i];

A[i+1] = B[i+1] + C[i+1];

}

for (i=994;i<1000;i++)

A[i] = B[i] + C[i];

(d)

for (i=0;i<994;i += 2 ) {

prefetch(A[i+6]);

prefetch(B[i+6]);

/* Does not prefetch C */

A[i] = B[i] + C[i] ;

A[i+1] = B[i+1] + C[i+1];

}

for (i=994;i<1000;i++)

A[i] = B[i] + C[i];

(e)

for (i=0;i<996;i += 2 ) {

/* prefetch 2 iterations in advance */

prefetch(A[i+4]);

prefetch(B[i+4]);

prefetch(C[i+4]);

A[i] = B[i] + C[i] ;

A[i+1] = B[i+1] + C[i+1];

}

/* Last two iterations peeled */

for (i=996;i<1000;i++)

A[i] = B[i] + C[i];

Fig. 2. (a) Original code before loop prefetching (b) Loop unrolling and peeling to iso-
late likely cache misses (c) Code after Mowry’s prefetching algorithm (PrefDistance =
3) (d) Code after applying GCC loop prefetching algorithm (prefetch slots=6) (e) Out-
come of the RAP algorithm: PrefDistance lowered to 2.
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decremented by PrefDistance. Once not enough PrefetchSlots are left, it stops
issuing prefetches for the remaining references.

For our running example, Fig. 2(d) shows the outcome of the GCC algo-
rithm. Since the prefetch instructions for the A[i] and B[i] references use up
all 6 available prefetch slots, no prefetch is issued for the C[i] reference. At
runtime, this means a cache miss penalty will be encountered every iteration of
the unrolled loop, significantly affecting its running time. Although the GCC
algorithm in Fig. 2(d) addressed the MSHR file overflowing issue encountered
by Mowry’s original approach in Fig. 2(c), it comes short of the main goal of
hiding the memory latency of all the memory references.

In the next section we discuss an enchanced prefetching algorithm, which
aims at addressing the limitations of previous approaches and obtain better
runtime on a series of benchmarks.

3 New Resource-Aware Prefetching Method

Intuition. Our main contribution is a new compiler prefetching algorithm –
Resource-Aware Prefetching (RAP) – which improves upon Mowry’s standard
loop prefetching algorithm as well as the GCC implementation by using the
very limited MHA resources more efficiently. Our algorithm robustly adapts
to constrained resources and uses them to hide as much latency as possible.
More concretely, we show that in situations where not enough prefetch slots are
available to issue prefetch instructions for all references, it is more beneficial to
decrease the prefetch distance and prefetch for as many references as possible.
By contrast, the GCC implementation uses a fixed prefetch distance and may
prefetch fewer references.

Fig. 2(e) shows the outcome of the RAP algorithm applied to our example
code. The prefetch distance has been lowered to two iterations, which allowed
prefetches to be issued for all three references. As will be discussed below, with
this transformation there will be only one cache miss per three iterations: once a
cache miss is encountered, it gives enough time for all previously issued prefetch
requests to complete, including current and next two iterations. By contrast, the
GCC implementation encounters one miss per each iteration, which translates
to three times more time spent in memory stalls.

Implementation. To formulate an algorithm for RAP, it is useful to under-
stand the limitations of GCC’s prefetcher. There is a subtle inconsistency in the
way GCC schedules prefetching instructions: on one hand, the prefetch distance
is computed assuming all memory latencies can be hidden through prefetching;
on the other hand, under certain conditions, prefetch instructions for some ref-
erences are not even issued, causing some references to be cache misses. This
affects the iteration time, and therefore the prefetch distance should be adjusted
accordingly: if each iteration takes longer, then prefetches can be issued fewer
iterations in advance and still be able to hide the latency. However, GCC does
not adjust the prefetch distance in these cases, effectively using a flawed model
for scheduling prefetches.
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Fig. 3. Dynamic cache trace for the code in Figure 2. (a) GCC loop prefetching with
PrefDistance = 3 and (b) RAP algorithm with PrefDistance = 1 (c) RAP algorithm
with PrefDistance = 2.

Figure 2(d) shows an example of the suboptimal scheduling algorithm de-
scribed above. To help understand the runtime behavior, we show the resulting
dynamic cache trace in Figure 3(a). The first three iterations are not prefetched
for, hence all references are cache misses. At each iteration from i = 6 onward,
the read from C[i] is going to be a cache miss, which on our hypothetical
architecture takes 50 clock cycles. This is 49 cycles more than in the original
estimate, and thus IterTime = 20 + 49 = 69. Using Equation (1), we need
PrefDistance = ⌈50/69⌉ = 1 iteration in advance. However, GCC schedules
prefetches using PrefDistance = 3 iterations in advance, according to the origi-
nal calculation. Moreover, because of this inconsistency, no prefetch instruction
is inserted for the C[i] reference, causing a miss at every iteration as ilustrated
in Fig.3(a).

Let us examine an alternative scheduling algorithm in which a smaller
PrefetchDistance is used. The RAP algorithm discussed in the rest of this paper
is based on this scheme. If we use PrefDistance = 1 iteration instead of 3, we can
now issue prefetches for all three references, using a total of MaxRequests = 3×
1 = 3 prefetch slots. The cache trace for this case is shown in Figure 3(b). When
i = 0, we issue prefetch requests for A[2], B[2] and C[2], then we encounter
three cache misses for A[0], B[0] and C[0]. For i = 2, we start by issuing
prefetches for iteration i + 2 = 4, then all references are cache hits, because the
prefetch requests issued at the beginning of iteration i = 0 overlapped with the
previous misses and have had time to complete (see Figure 3(b)). For i = 4, we
have a cache miss for A[4], but that gives enough time for the prefetches for
B[4] and C[4] to complete, and thus they become cache hits. The cache miss
for A[4] also gave enough time for all prefetches for iteration i = 6 to complete,
meaning we have three cache hits in that iteration. The execution enters a steady
state at this point, with one cache miss every other iteration, until the end of
the loop.
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Similarly, we can also use PrefDistance = 2, which yields the code in Fig. 2(e)
and the trace in Fig. 3(c). Following a similar reasoning, we observe that in the
steady state we encounter one miss every 3 iterations, leading to:

Claim 1 Let PDMowry =
⌈

MissLatency
IterationTime

⌉

the prefetch distance computed

by Mowry’s algorithm (and also GCC). For any prefetch distance PDRAP <
PDMowry and

PDRAP × NumRefs ≤ PrefetchSlots (3)

we can issue prefetch instructions PDRAP iterations in advance for all references
without exceeding the available PrefetchSlots (number of MSHR entries), and
this will result in exactly one cache miss per PDRAP +1 iterations in the steady
state.

The claim can be easily verified: once a cache miss has been encountered,
it allows enough time for all the prefetch requests already issued for the next
PDRAP iterations to complete, ensuring they are all hits. However, since PDRAP

iterations with all hits do not provide enough time to hide the miss latency,
iteration PDRAP + 1 encounters a cache miss for the first read. The cycle then
repeats.

Using Claim 1, we can compute the average loop iteration time in the steady
state when PDRAP < PDMowry :

AvgIterTime = IterHit +
IterMiss − IterHit

PDRAP + 1
(4)

where IterHit is the iteration time when all references are hits (20 cycles in our
example) and IterMiss is the iteration time with one cache miss (69 for our
example).

The average iteration time (4) is a strictly decreasing function of the prefetch
distance PDRAP . To minimize the overall execution time, we use the upper
bound value:

PDRAP =

⌊

PrefetchSlots

NumRefs

⌋

(5)

given by (3). In the example in Figure 2(e), we have PDRAP = ⌊6/3⌋ = 2. We
can now present our improved compiler algorithm:

Algorithm 2 Resource-Aware Prefetching

I-II. Identical to Steps I-II in Algorithm 1.

III. Compute PDMowry =
⌈

MissLatency
IterationTime

⌉

and NumRef the number of refer-

ences. Let PDRAP =
⌊

PrefetchSlots
NumRefs

⌋

.

III.1 If PDMowry×NumRefs ≤ PrefetchSlots, schedule prefetch instructions
for all NumRef references PDMowry iterations in advance.

III.2 If PDMowry × NumRefs > PrefetchSlots and PDRAP ≥ 1, schedule
prefetch instructions for all NumRef references PDRAP iterations in ad-
vance.
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III.3 If PDMowry × NumRefs > PrefetchSlots and PDRAP = 0, schedule
prefetch instructions for the first PrefetchSlots references in program or-
der exactly one iteration in advance.

Case III.1 corresponds to the non-resource restricted situation, where we fall
back on the same scheduling algorithm as Mowry’s (and GCC) algorithm. Case
III.2 occurs in situations when there are not enough PrefetchSlots to completely
hide all cache misses; the algorithm issues one prefetch for each reference using
a smaller prefetch distance, resulting in one cache miss every PDRAP+1 itera-
tions. Case III.3 occurs in severely resource-constrained cases, where we have
more static references than PrefetchSlots. The algorithm issues prefetch instruc-
tions one iteration ahead to as many references as possible, without exceeding
PrefetchSlots.

3.1 Additional Optimizations

During the design and evaluation of the RAP compiler algorithm, we imple-
mented a few other compiler transformations, which contributed to the perfor-
mance benefits reported in our experimental results.

Thread clustering. Loop prefetching does not naturally apply to all types
of workloads and data structures. However, given the nature of fine-grained
parallel code – short work units, high degree of parallelism – prefetching can be
enabled for some benchmarks by using a simple compiler transformation. The
compiler can insert several short independent work units (or tasks) in a loop
within a coarser task, effectively enabling the use of loop prefetching, at the
possible cost of a less load-balanced execution. This compiler technique, called
thread clustering [23], allowed us to evaluate the loop prefetching algorithm on
all our benchmarks.

Prefetching after reference. In most modern architectures, a MSHR entry
is allocated for a prefetch request as soon as it is issued, affecting the value of the
MaxRequest value. Consider a memory reference A[i] and its associated prefetch
instruction prefetch(A[i+PD]), with PD the prefetch distance. Right before
A[i] is accessed we will have pending (unconsumed) prefetches for references
A[i], A[i+1],. . . A[i+PD-1], using up a total of PD MSHR entries. At this
point we can chose to issue the prefetch for A[i+PD] before or after the reference
to A[i]. If the prefetch is inserted textually in the code before the reference
to A[i] (i.e. as in Fig. 2), an additional MSHR will be needed (for a total of
PD + 1). Alternatively, the prefetch instruction for A[i+PD] can be inserted in
the code right after the reference to A[i]. Hence one prefetched value will be
consumed before issuing the new one, thus require reserving only PD MSHR
entries. This leads to a saving of one MSHR entry per reference prefetched, at
the cost of hiding slightly less latency, since the prefetch is now issued closer to
the use. In severely resource-constrained environment, this minor optimization
can have a non-trivial effect on performance.

We implemented the “prefetch-after reference” optimization in the RAP al-
gorithm, but we left Mowry’s and the GCC implementations unchanged to use
the default “prefetch-before” variant.
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4 The XMT Framework

In Section 1 we argue that the constraint on the amount of Memory-Level Paral-
lelism is a major limitation for many-core architectures. For evaluation purposes,
we chose the XMT architecture as a forward-looking lightweight-core platform.
Recent benchmarking efforts have shown that XMT can achieve consistent per-
formance improvements when compared to modern architectures [6, 36, 5], while
using a straightforward scalable design and an easy-to-program interface.

The primary goal of the eXplicit Multi-Threading (XMT) on-chip general-
purpose computer architecture (e.g. [23]) is improving single-task performance
through parallelism. XMT was designed from the ground up to capitalize on the
huge on-chip resources becoming available with new fabrication technologies. It
is meant to leverage the vast body of knowledge, known as Parallel Random
Access Model (PRAM) algorithmics, and the latent, though not widespread,
familiarity with it. A 64-core FPGA prototype was reported and evaluated in
[34–36].
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Fig. 4. XMT architecture overview.

The XMT architecture, depicted in Fig. 4, includes an array of lightweight
cores called Thread Control Units (TCUs) and a serial core with its own cache
(Master TCU). The processor includes several clusters of TCUs connected by a
high-throughput mesh-of-trees (MOT) interconnection network [3]; an instruc-
tion and data broadcast mechanism; a global register file (GRF); a prefix-sum
unit (PS). The first level of cache is shared and partitioned into mutually-
exclusive cache modules sharing several off-chip DDR2 DRAM memory chan-
nels. The TCU Load-Store unit applies a hashing function on each address to
avoid memory hotspots. Cache modules handle concurrent requests and provide
buffering and request reordering to achieve better DRAM bandwidth utilization.
Within a cluster, a compiler-managed Read-Only Cache (ROC) is used to store

12



constant values across all threads. TCUs include lightweight ALUs, but the more
expensive units are shared by all TCUs in a cluster.

int A[N],B[N],base=0;

spawn(0,N-1) {

int inc=1;

if (A[$]!=0) {

ps(inc,base);

B[inc]=A[$];

}

}

(a)

spawn

join

spawn

join$

(b)

Fig. 5. (a) XMTC program example: Array Compaction. (b) Execution of a sequence
of spawn and join.

The underlying programming model of the XMT framework is PRAM-like,
where the lock-step execution of PRAM is relaxed, and threads proceed in-
depently within a spawn block. The spawn and join instructions specify the
beginning and the end of a parallel section that contains an arbitrary number
of virtual threads sharing the same code, as shown in Fig. 5. As in SPMD mod-
els, threads access data based on their unique id (specified by the $ identifier).
An algorithm programmed for the XMT model usually permits each thread to
progress at its own speed from its initiating spawn to the terminating join, with-
out ever having to busy-wait for other threads, methodology called “indepen-
dence of order semantics (IOS).” XMT also includes a hardware implementation
of a powerful prefix-sum primitive similar in function to the NYU Ultracomputer
Fetch-and-Add; it provides constant, low overhead inter-thread coordination, a
key requirement for implementing efficient fine-grained parallelism. Fig. 5(a) il-
lustrates the XMTC programming language, a simple SPMD extension of C.
The example shows how it can be used to assign a unique index in array B

when compacting an array A. The non-zero elements of array A are copied into
an array B. The order is not necessarily preserved. After the execution of the
prefix-sum statement ps(inc,base), the base variable is increased by inc and
the inc variable gets the original value of base, as an atomic operation.

XMT allows concurrent instantiation of as many virtual threads (tasks) as
the number of available processors. Tasks are efficiently started and distributed
thanks to the use of prefix-sum for fast dynamic allocation of work and a ded-
icated instruction broadcast bus. The high-bandwidth interconnection network
and the low-overhead creation of many threads facilitate effective support of
fine-grained parallelism.

Prefetch support. In the XMT design in Fig. 4, the prefetch buffer unit
represents the Miss Handling Architecture (MHA) at the TCU level, consisting
of one MSHR file per TCU. Each MSHR file contains a configurable number
of MSHR entries. The XMT unit of work consists of a virtual thread (the code
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executed with one unique thread id), or a loop consisting of several thread ids
if clustering is used. The RAP algorithm is applied at the work unit level, and
to the innermost loop.

Prefetching as a tool towards ease of programming. Ease of program-
ming is a necessary condition for the success of a general-purpose many-core
platform, and it is one of the main objectives of XMT. Relying on compiler
prefetching to optimize for the length of sequence of roundtrips to memory
(LSRTM) [32] significantly lowers the programmer’s effort, allowing them to
focus on designining efficient parallel algorithms instead of on low-level details.
Indications that XMT is an easy-to-program efficient parallel architecture, in-
clude:

– the ease of teaching of XMT programming as an adoption benchmark has
been established in repeated instances, from middle-school and up, and by
independent education experts [29], and shown to be superior to alternative
parallel approaches such as MPI, OpenMP and CUDA;

– XMT is based on a rich algorithmic theory (PRAM) that provides a solid
framework for designing and analyzing algorithms, equivalent to the serial
model;

– XMT provides a programmer’s workflow for deriving efficient programs from
PRAM algorithms, and reasoning about their execution time [32] and cor-
rectness;

– in a semester-long study supported through the DARPA HPCS program,
the development time of XMT was, not surprisingly, shown to be about half
that of MPI under circumstances favoring MPI [11].

5 Experimental Evaluation

Simulated configuration. We are using XMTSim, a configurable, event driven
cycle-accurate simulator of the XMT architecture. XMTSim timing is accurately
modeled after the 64-core FPGA implementation, but it can be customized to
realistically simulate any configuration, beyond the resource limitations of the
FPGA prototype. At this time, off-chip buses and DRAM modules are modeled
as fixed latency components in the simulator. The XMT compiler and simulation
environment are publicly available [1].

The simulated configuration consists of 64 cores (TCUs) grouped in 8 clus-
ters, with 256KB of shared on-chip cache and 4 DDR2 DRAM channels. The
TCU MSHR file size varies between 1 and 12 entries.

Compiler Infrastructure. We used the GNU C compiler (GCC) 4.0.2 as
the base compiler for our infrastructure. We adapted and improved upon the
loop prefetching optimization pass targeted at the code executed by TCUs while
in parallel mode. The loop prefetching algorithm operates using the Tree-SSA
framework of GCC 4.0+.

Benchmarks. Table 1 describes the benchmarks used for evaluating the
compiler algorithm performance. The benchmarks are written in XMTC and
were chosen from a variety of domains to reflect various access patterns and
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application types. Our goal in collecting the benchmarks was to sample as many
application domains as possible, and as a result we have both integer and floating
point kernels from scientific computing, image processing, databases and linear
algebra.

Table 1. Benchmarks used.

Name Description Input MR a

jacobi 2D PDE solver kernel 1024x1024 12

lu LU factorization 256x256 12

conv Image convolution 128x128 12

separ Separable image filtering 512x256 8

dbscan SQL Non-indexed Select query 2M records 6

matmult Dense matrix multiplication 256x256 12

SpMV Sparse matrix - vector mult. 4M values 9

treeadd Summation of binary tree nodes 1M values 6

a Maximum number of simultaneous prefetch requests required when using loop
prefetching

Evaluation of Compiler Algorithm. To determine the effectiveness of
the RAP algorithm we set out to execute our benchmarks on a series of config-
urations. For each benchmark, we computed the performance improvement of
the RAP algorithm versus both Mowry’s original algorithm and the GCC im-
plementation when using configurations with 1, 2, 4, 6, 8, 10 and 12 MSHR file
capacity.

The improvements of RAP over Mowry’s algorithm and the GCC implemen-
tation are shown in Figs. 6(a) and 6(b). As we see from the two figures, the
average run-time improvement across all benchmarks from our compiler algo-
rithm ranges from 25.63% to 40.15% when compared to Mowry’s algorithm, and
from 13.18% to 34.79% when compared to GCC, depending on the number of
MSHR entries.

Fig. 6(b) shows the comparison of the RAP algorithm with the GCC imple-
mentation of loop prefetching. For each configuration, we provide GCC with the
exact size of the MSHR file as the number of PrefetchSlots. When not enough
PrefetchSlots are available to hide all latencies, the GCC algorithm does not
issue prefetch instructions for some of the references. By contrast, the RAP al-
gorithm decreases the prefetch distance, and issues as many prefetch instructions
as the MSHR has capacity. This allows it to hide more of the memory latencies,
and to outperform GCC.

The reason that the run-time improvements only show up to 12 words MSHR
capacity can be identified by looking at the parameters of the architecture and
benchmarks. On XMT, we are prefetching from the shared L1 cache to the
TCUs. The latency for an L1 access is ≈ 24 cycle in the current configuration.
Given this latency, the prefetch distance is usually small (1-3 iterations), and

15



SEPAR CONV dbscan jacobi lu matmult SPMV treeadd Average
0%

10%

20%

30%

40%

50%

60%

(a) RAP vs. MOWRY MSHRs 1 2 4 6 8 10 12

%
 Im

p
ro

ve
m

e
nt

 fo
r 

R
A

P

SEPAR CONV dbscan jacobi lu matmult SPMV treeadd Average
0%

10%

20%

30%

40%

50%

60%

(b) RAP vs. GCC MSHRs 1 2 4 6 8 10 12

%
 Im

p
ro

ve
m

e
nt

 fo
r 

R
A

P

SEPAR CONV dbscan jacobi lu matmult SPMV treeadd Average
−10%

0%
10%
20%
30%
40%
50%
60%

(c) RAP vs Hardware prefetch MSHRs 1 2 4 6 8 10 12

%
 Im

p
ro

ve
m

e
nt

 fo
r 

R
A

P

Fig. 6. Performance improvement of RAP compared to (a) Mowry, (b) GCC and (c)
one-block-lookahead hardware prefetching

thus the MaxRequest value for the benchmarks ranges between 6 and 12 for our
benchmarks, as shown in Table 1. Therefore, for MSHR files with 12 entries or
larger, we are not in a resource-constrained regime, and there are no advantages
for using the RAP algorithm over the alternative algorithms.

Our results mark a significant improvement over existing approaches, as most
of the time will be spent in resource-constrained conditions. For the class of
highly parallel architectures we are targeting, a per-core MSHR of 12 entries
represents a significant budget of area and power. Future manycore architec-
tures will probably devote even fewer resources for the MHA, making the RAP
algorithm highly relevant.

Comparison with Hardware Prefetching. We compare the RAP soft-
ware prefetching algorithm with an implementation of XMT that includes a
hardware prefetching mechanism. Traditional single- and multi-core processors
include sophisticated hardware prefetching units, capable of monitoring and dis-

16



SEPAR CONV dbscan jacobi lu matmult SPMV treeadd Average
−20%

−10%

0%

10%

20%

30%

40%

50%

60%
(a) RAP vs Mowry+Hardware Prefetch MSHRs 1 2 4 6 8 10 12

%
 Im

p
ro

ve
m

e
nt

 fo
r 

R
A

P

SEPAR CONV dbscan jacobi lu matmult SPMV treeadd Average
−10%

0%

10%

20%

30%

40%

50%

60%
(b) RAP vs. GCC + Hardware Prefetch MSHRs 1 2 4 6 8 10 12

%
 Im

p
ro

ve
m

e
nt

 fo
r 

R
A

P

SEPAR CONV dbscan jacobi lu matmult SPMV treeadd Average
−10%

0%

10%

20%

30%

40%

50%

60%
(c) RAP vs. RAP + Hardware Prefetch MSHRs 1 2 4 6 8 10 12

%
 Im

p
ro

ve
m

e
nt

 fo
r 

R
A

P

Fig. 7. Interference of software with hardware prefething. Performance improvement of
RAP compared to (a) Mowry + OBL hardware prefetching, (b) GCC + OBL hardware
prefething and (c) RAP + OBL hardware prefething.

tinguishing multiple independent streams of requests and identifying large ac-
cess strides. However, the hardware complexities of such units make them pro-
hibitively expensive per-core for a many-core architecture. Only a simple hard-
ware prefetcher, that requires minimal hardware additions, could be considered.
A well known such technique is One-Block-Lookahead (OBL, e.g. [27]), which
prefetches the next cache line once a particular line is first read.

We implemented this scheme in XMTSim, the XMT cycle-accurate simu-
lator. Since TCUs have no regular caches (to avoid coherence costs and area
constraints), we prefetch at the granularity of one word, instead of one cache
line: once a read request for address x is issued, a prefetch request for address
x + 4 is automatically generated. The results in Fig.6(c) show that the software
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RAP prefetching algorithm outperforms the OBL hardware scheme by 7.64% to
24.61% on average.

In Fig. 7 we compared the performance of the software-only RAP algorithm
with configurations in which both hardware and software prefetching were en-
abled. Most modern serial and multi-core architectures have support for both,
and they can usually be enabled or disabled through system configuration tools
and compiler flags.

Figures 7(a) and 7(b) present the performance improvements of RAP ver-
sus configurations where on top of the OBL hardware prefetcher (OBL-HP),
the compiler used Mowry’s and GCC’s software prefetching algorithm respec-
tively. The hardware and software prefetchers interfere and compete for using the
MSHR, which leads to less predictable results. In particular, on few configura-
tions, the combined software-hardware outperforms the software-only approach.
However, on average across all benchmarks, the RAP algorithm is 8.3-26.5%
faster than Mowry plus OBL-HP and 8.3-27% faster than GCC plus OBL-HP.

We also examined the performance of the RAP algorithm when the OBL-
HP was enabled, as shown in Fig. 7(c). We observed the same performance
degradation caused by the interference of the two mechanisms, with the software-
only RAP outperformed RAP plus OBL-HP by 10.8-29.8%.

This strengthens the case that given the severe per-core limitations present in
many-cores, least resource-intensive latency hiding techniques such as software
prefetching offer the best performance.

6 Design Space Exploration for Prefetching and Memory

Resources

6.1 Objectives

We conducted a design-space exploration (DSE) of the XMT architecture with
respect to the two components that are most relevant to memory-level paral-
lelism: (a) the capacity of the TCU MSHR file, and (b) the off-chip bandwidth
to DRAM, as controlled by the number of DRAM channels. More MSHR entries
allow more data elements to be simultaneously prefetched, and more loop itera-
tions before they are actually needed, hiding more of the latency. More DRAM
channels provide more bandwidth which can be used to prefetch data, in addition
to serving the regular, non-prefetched memory accesses.

The goals of our study are: (i) to get a rough estimate of what the overall
hardware cost for software-prefetching support is for a lightweight manycore,
and whether this cost is feasible; (ii) to understand the tradeoffs between two
different hardware-assisted techniques for boosting MLP – software-prefetching
and multiple DRAM channels – and determine what combination is a good
configuration for a lightweight manycore architecture such as our experimental
platform; and (iii) to evaluate the ability of the RAP software prefetching algo-
rithm to achieve good performance for a wide variety of machine configurations
in an adaptable manner.
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6.2 Design Space

We consider multiple design space points that range from the bare-bones archi-
tecture with no MSHR file and one DRAM channel, to a configuration including
20-word MSHR files and 8 DRAM channels. We scale the capacity of the MSHR
file linearly in increments of 2 words per core, and use powers of two for the
number of DRAM channels (evaluating 1, 2, 4 and 8).

We did not include the hardware required to implement the One-Block-
Lookahead hardware prefetching mechanism in the design space. This scheme
requires additional per-TCU hardware to compute next block’s address and is-
sue the new prefetch request. A MSHR file is still required to keep track of the
outstanding memory requests issued but not completed. The results presented
in Section 5 show that the OBL scheme is always slower than the RAP software
approach while requiring more chip resources, therefore there is no benefit in
choosing a configuration with OBL support.

6.3 Targeted ASIC Parameters

Our basic design is based on the HDL description of the XMT Paraleap system
[36]. The HDL design was validated by prototyping using both FGPA and ASIC
technology. The DSE results in this section are based on the ASIC synthesis
process, for which we used the Synopsys Design Compiler and the 90nm IBM
CMOS9SF library, part of Artisan’s SAGE-X v3.0 Standard Cell Library.

The targeted clock frequency of a 64-TCU XMT ASIC is in the same range
as a modern many-core architecture such as GPUs. This claim is based on the
results from (i) the ASIC implementation of the Mesh-of-Trees (MoT) intercon-
nection network fabricated in 90nm IBM technology [3], (ii) a complete 64-TCU
XMT integer-only chip using the same IBM fabrication process and (iii) a de-
tailed chip area comparison between a 1024-XMT configuration and a NVIDIA
GTX 280 [5]. By using the same generation technology as a modern GPU, as
well as a comparable amount of engineering and optimization effort, XMT can
support clock frequencies in the range of 1-1.3GHz and possibly higher.

6.4 Area Scaling Methodology

The design is highly parametrized, and therefore we can synthesize gate-level
descriptions of various configurations. After synthesis, we extract the cell area of
units of interest and reference it relative to the total design cell count. A cell is the
basic unit of ASIC design, a standard arrangement of transistors that implements
a gate or flip-flop. We note that these area numbers are likely to change when the
design undergoes the Place-and-Route process. At the present time, our tools did
not permit us to obtain direct area numbers for sub-components after the P&R
phase, and thus we use the cell areas reported by the synthesis as approximations
of the final gate counts.

To evaluate the change in area for each of our design points, we first identify
the hardware modules we are going to scale in the HDL description, determine
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the area they use in a representative subset of configurations from the synthesis
output, then extrapolate to the the rest of the points.

6.5 DSE Results

We evaluate the chosen design points from the point of view of average runtime
across all the benchmarks. For each hardware design configuration described in
Section 6.2, we initialize the XMT cycle-accurate simulator with the respective
set of parameters and execute all the benchmarks in the test suite. We use the
RAP compiler algorithm described in Section 3, as well as the thread clustering
transformation to enable prefetching for all the benchmarks in our study.

As reference point, we use a bare-bones configuration that includes 64 parallel
TCUs, no MSHR file and one DRAM channel. For each design point, we evaluate
the relative increase in area due to the change in parameters (MSHR file capacity
or additional DRAM channels). Fig. 8 shows the observed increase in number
of cells used for the DRAM channels and for the MSHR File when scaling the
number and capacity respectively. For example, we identified that the area used
for increasing the capacity of the MSHR file from 4 to 8 words over all 64
TCUs is 263,872 cells, representing 0.59% increase from the base configuration
total chip area of 44,797,832 cells. An additional DRAM channel added 357,819
cells, representing a 0.8% increase in area relative to the same base configuration.
Except for the non-linear increase observed between zero and four MSHR entries,
due to fixed costs of adding the prefetch datapath, the growth is mostly linear.
We extrapolate from our set of synthesized configurations to the rest of the
design space points to estimate area increases.
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We record the average execution time across all the benchmarks, normalized
to the bare-bones configuration. Fig. 9 represents a Performance-Area scatter
plot of all the design points. For each point, we include a 2-tuple representing
the number of DRAM channels and the MSHR file capacity. The point labeled
(1,0) is the reference configuration used, normalized to a runtime of 100 and
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area increase of 0%. A first insight is the significant increase in performance
resulting from the inclusion of even a small MSHR file. This is illustrated by the
difference in performance between the configurations with no MSHR file (1,0),
(2,0), (4,0),(8,0) and the rest.
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We combine collected average performance numbers with area information
and determine the Pareto-optimal design space points. These represent the only
viable choices to the hardware designer, since no other configuration has bet-
ter performance for a lower area. Note that this curve is computed using a
heterogenous set of benchmarks. For a special-purpose architecture, the same
methodology can be used, but using a workload that is characteristic of the
target application domain, and a different curve will be obtained.

The dotted line in Fig. 9 depicts the Area-Performance Pareto frontier. A
system designer can use this diagram to choose the best performing configu-
ration for a given area, by choosing the appropriate Pareto optimal point. In
addition, we can observe the knee of the curve (4,12) which is the configura-
tion point with 4 DRAM channels and 12 MSHR file entries, and represents
the point of diminishing returns, with 5.47% area increase and 53.66% perfor-
mance improvement; after reaching point, additional increases in area do not
translate in significant increases in performance. This knee of the curve (4,12)
represents our best recommended configuration for an XMT implemented with
today’s technology.
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Hardware engineers can use the data in Fig. 9 to make informed design
decisions. For example, they can determine that by increasing the total chip area
by 3.09%, the resulting system will be 47.36% faster (for the 2 DRAM channels,
4 entry MSHR file configuration), observation that can affect the decision to
allocate additional resources or use more aggressive optimizations in the design
and synthesis tools.

6.6 Additional Considerations

We are using a number of simplifying assumptions in this study by not including
considerations such as the I/O pin count and power/thermal optimizations. Such
topics are currently under study as part of the XMT project and we plan to
incorporate them as additional dimensions in future work. This study is still
useful, however; since if, for example, there is an upper bound on the allowed pin
count, the designer can choose among a subset of all the Pareto-optimal designs
we derive; namely the subset that also satisfies the pin count constraint.

7 Related Work

Prefetching is a widely studied technique used to hide the increasingly high la-
tencies (in terms of clock cycles) of memory accesses in modern architectures.
Software prefetching [21, 19, 7] relies on the existence of non-blocking prefetch
instructions and is usually enabled by the compiler. In hardware prefetching (e.g.
[27, 14, 18]) a specialized hardware unit infers prefetching opportunities by mon-
itoring run-time behavior. Prefetching schemes for parallel architectures in both
software [19, 31, 20] and hardware (e.g. [8]) build upon uni-processor prefetching
by taking into consideration issues caused by sharing of data and resources, such
as coherence traffic and overheads.

Several studies have considered the interaction of the architectural param-
eters with the performance of software prefetching algorithms. In his compre-
hensive work on software data prefetching, Mowry [22] explores the effect on
execution time of varying the number of outstanding prefetch requests that can
be handled simultaneously by the hardware. The author also compares two ver-
sions of the prefetch issue buffer hardware - one in which the processor stalls
when the buffer is full, and one where additional requests are simply dropped.
Their results were mixed, with the former performing slightly better when using
the prefetching algorithm described in Section 2. In follow-up work, Mowry [20],
as well as McIntosh [19], settle for a fixed-size prefetch issue buffer of 16 loca-
tions. Several other papers study the effects of changing the size of the prefetch
destination (either cache or dedicated prefetch buffers) for systems with software
[7, 15] or hardware prefetching [14]. However, unlike our approach, in all of these
existing schemes the prefetch algorithm is unaware of the prefetch hardware
configuration, and does not adapt its behavior.

GCC is the only attempt to consider the amount of prefetch resources avail-
able as part of the loop prefetching algorithm. As described in Section 1, the
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GCC algorithm limits the number of memory references prefetched to meet a
fixed upper bound. However, no guidance is given on how to chose this upper
bound, as it is not clear what the underlying hardware limitation is accounted
for. Yang et. al [37] empirically set the maximum number of prefetch instruc-
tions issued by the GCC compiler for the IA64 platform to 12. However, their
study does not address the underlying limitations of the GCC algorithm dis-
cussed above. In our approach, we identify the hardware resource dictating the
maximum number of prefetch requests allowed (the MSHR file), and provide an
original scheduling algorithm which limits the prefetch distance instead of the
number of references prefetched, and show that it outperforms both Mowry’s
and GCC’s implementations.

In recent work, Tuck et. al [30] propose an alternate MHA organization

that would provide increased MSHR capacity at the expense of slightly higher
latencies. However, it is not clear how the performance of the scheme would
change when scaled to the degree of parallelism required by the emerging many-
core architectures. Different schemes for improving the functionality of existing
MHAs, by either dynamically adjusting the MHA capacity to reflect the memory
bus load [13] or by devising a MHA-aware cache replacement policy to reduce
the number of cache misses [26] have been proposed. Our compiler algorithm
is orthogonal to these techniques and can function alongside these hardware
enhancements.

In the area of design-space exploration, recent years have seen a burst of
studies targeted at understanding the interactions between performance, energy,
thermal efficiency and area in the design of chip multi-processors (CMPs), or
multi-cores. Huh et. al [12] explore the design space of CMPs as the available
transistor budget grows with the fabrication technology. They consider in-order
vs. out-of-order cores, amount of cache per processor and availability of off-chip
bandwidth, while varying the area constraints. Li et. al [16] extend the study by
including pipeline depth and width, operating voltage and frequency and cooling
mechanisms as design space dimensions, as well as adding thermal constraints.
Methods for automatically or semi-automatically design space exploration for
specialized architectures such as System-On-Chip and signal processing have
also been proposed [10, 17]. These studies are all focused on share-nothing work-
loads, optimizing architectures designed for throughput rather than single-task
completion time.

The research presented in this paper differs from prior work in that it fo-
cuses on MLP resources – MSHR capacity and DRAM channels – for design
space exploration. It also does so in conjunction with a resource-aware compiler
algorithm that efficiently uses the limited resources at each design point. This
study is targeted at the needs of lightweight manycore architectures which aim
to optimize single-task completion time, an emerging architectural paradigm.
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8 Conclusion

We presented RAP – an improved compiler loop prefetching algorithm targeted
at many-core architectures, and showed that under resource constrained sce-
narios it outperforms Mowry’s well known loop prefetching algorithm by up
to 40.15%, the GCC improved implementation by up to 34.79% and a simple
hardware prefetching scheme by up to 24.61%. The RAP algorithm is robust,
providing considerable improvements and never falling behind significantly on
any of the hardware configurations tested, making it a timely and necessary
addition to compilers targeting fine-grained many-core architectures.

In addition, we conducted a Design-Space Exploration focused on resources
directly affecting support for Memory-Level Parallelism on an emerging many-
core architecture, the XMT Paraleap. We identified the Pareto-optimal hardware-
software configuration which delivered 53.66% performance improvement on av-
erage while using only 5.47% more chip area than the bare-bones design. The
methodology of evaluating each design point by adapting the RAP algorithms
to the prefetch resources available is also of interest.
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