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ABSTRACT

As hardware becomes increasingly parallel and the avail-
ability of scalable parallel software improves, the problem
of managing multiple multithreaded applications (processes)
becomes important. Malleable processes, which can vary the
number of threads used as they run, enable sophisticated and
flexible resource management. Although many existing ap-
plications parallelized for SMPs with parallel runtimes are
in fact already malleable, deployed run-time environments
provide no interface nor any strategy for intelligently allo-
cating hardware threads or even preventing oversubscrip-
tion. Work up until SCAF either depends upon profiling
applications ahead of time in order to make good decisions
about allocations, or does not account for process efficiency
at all. This paper presents the Scheduling and Allocation
with Feedback (SCAF) system, a drop-in runtime solution
which supports existing malleable applications in making
intelligent allocation decisions based on observed efficiency
without any paradigm change, changes to semantics, pro-
gram modification, offline profiling, or even recompilation.
Our existing implementation can control most unmodified
OpenMP applications. Other malleable threading libraries
can also easily be supported with small modifications, with-
out requiring application modification.

In this work, we present the SCAF daemon and a SCAF-
aware port of the GNU OpenMP runtime. We demonstrate
that applications running on the SCAF runtime still per-
form well when executing on a quiescent system. We present
a new technique for estimating process efficiency purely at
runtime using available hardware counters, and demonstrate
its effectiveness in aiding allocation decisions.

We evaluated SCAF using NAS NPB parallel benchmarks.
When run concurrently pairwise, 70% of benchmark pairs on
an 8-core Xeon processor saw improvements averaging 15%
in sum of speedups compared to equipartitioning. For a 64-
context Sparc T2 processor, 57% of pairs saw a similar 15%
improvement. The improvement was 45% vs. equipartition-
ing when three selected benchmarks were concurrently run.
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1. INTRODUCTION

When running multiple parallelized programs on many-
core systems, such as Tilera’s TilePro64, or even large Intel
x86-based SMP systems, a problem becomes apparent: each
application makes the assumption that it is the only ap-
plication running, and consequently the machine is quickly
oversubscribed if multiple programs are running. A machine
is said to be oversubscribed when the number of computa-
tionally intensive threads exceeds the number of available
hardware contexts. This problem becomes increasingly im-
portant as we move to systems with more cores than appli-
cations, where space sharing of cores between applications
is desirable but rarely done in practice. Modern operating
systems attempt to time-share the hardware resources by
context switching, but this is a poor solution. The context
switching incurs additional overhead. Further, when some
threads participating in a barrier are context-switched out,
other threads in the same barrier may incur long waiting
times, reducing system throughput. Finally, some synchro-
nization techniques, such as spinlocks, depend heavily on
the presence of dedicated hardware contexts for reasonable
performance.

In this paper, we define the parallel efficiency of executed
code to be F = %7 where executing the code in parallel on p
hardware contexts yielded a speedup S over serial execution.
We say that a multiprogrammed parallel system has high
total efficiency when the sum of speedups achieved by its
processes is high. That is, the average hardware context
contributes a large speedup.

When dealing with truly malleable parallel programs, the
ideal solution is to actually change the number of software
threads that need to be scheduled, approximating space
sharing. We argue that this should be done automatically



and transparently to the system’s users. Existing paralleliza-
tion runtimes generally allow users to specify the maximum
number of threads to be used at compile-time or run-time.
However, this number remains fixed for the duration of the
program’s execution, and it is unreasonable to expect users
on a system to manually coordinate. Furthermore, even on
a single-user system it is not always clear how best to al-
locate hardware contexts between applications if good total
system efficiency is desired: scalability may vary per ap-
plication and across inputs. Finally, in order for a solu-
tion to be adopted, it should not require new programming
paradigms or place excessive demands on the users. That is,
users should not be required to rewrite, recompile, profile, or
spend time carefully characterizing their programs in order
to benefit. We believe that this cost to the user is the pri-
mary reason that none of the literature’s existing solutions
have enjoyed widespread adoption.

As a result, we sought to create a scheme which satisfies
the following requirements:

e Total system efficiency is optimized, taking individual

processes’ parallel efficiencies into account

No setup, tuning, or manual initialization of any par-
ticipating application is required before runtime

No modification to, or recompilation of, any partici-
pating application is required

Effectiveness in both batch and real-time processing
scenarios

System load resulting from both parallel processes which
are not truly malleable, as well as processes which are
not participating in the SCAF system, is taken into
account

Looking at existing research and experiments, the ingredi-
ents seem to be available. Some solutions gather information
on efficiency by making use of pre-execution profiling[7, 12],
while others do not require profiling and do not account for
program efficiency[13, 15, 8, 18]. However, it is nontrivial
to measure and account for program efficiency without pro-
filing. This task is made more difficult by the fact that we
want to avoid modifying or even recompiling any applica-
tions — instrumentation and communication between SCAF
processes must be added only as modifications to the com-
piler’s parallelization runtime libraries.

SCAF solves this problem with a technique which allows
a client to estimate its efficiency entirely at runtime, alle-
viating the need for pre-execution profiling. To understand
how, consider that parallel efficiency can only be measured
by knowing speedup vs serial execution. However, in a par-
allel program there is no serial equivalent of parallel sec-
tions; hence serial measurements are not directly available.
Running the entire parallel section in serial is possible, but
can greatly slow down execution, overwhelming any benefits
from malleability.

We solve the problem of measuring serial performance at
low cost by cloning the parallel process into a serial experi-
mental process the first time each parallel section is encoun-
tered dynamically. During this first run, the serial experi-
ment is run concurrently with the parallel code as long as
the latter executes. The parallel process runs on N —1 cores,
and the serial process on 1 core, where N is the number of
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threads the parallel process has been allocated. Crucially,
the serial thread is not run to completion (which would be
expensive in run-time overhead); instead it is run for the
same time as the current parallel section. We find this gives
a good enough estimate of serial performance to be able to
estimate efficiency. The run-time overhead of the serial ex-
periment is very low because it is run only once during the
first dynamic instance of the parallel section. Subsequent dy-
namic runs of the parallel section run on N cores without
running the serial experiment.

We demonstrate that the SCAF runtime incurs low over-
head on a process running alone, because experiments are
infrequent. Furthermore, we evaluate the SCAF system in
various multiprogramming scenarios, showing that SCAF
generally improves system efficiency over both an unmod-
ified OpenMP runtime and simple equipartitioning.

We plan to make SCAF open-source by the time of publi-
cation. An executable version will be available for users. A
source-code version will be available to aid researchers.

2. RELATED WORK

SCAF seeks to solve performance and administrative prob-
lems related to the execution of multiple multithreaded ap-
plications on a many-core shared-memory system. This sec-
tion outlines related work, both in the world of shared-
memory parallelism, and in the world of distributed-memory
parallelism. The section is concluded with a concise table
(Table 1) of features and properties satisfied by the various
systems and SCAF.

2.1 Distributed Memory Systems

Flexible and dynamic scheduling for distributed memory
parallel applications and systems has been an active area of
research. SCAF does not compete in the distributed mem-
ory world, as it is designed to solve problems pertaining to
shared-memory systems. However, since the problems are
similar at a high level, we briefly describe some of the re-
lated work in this section.

Kale et al [11] implemented a system for dynamically re-
configuring MPI-based applications through a system using
a processor virtualization layer. Crucially, this allows the
migration of work from one node of the distributed system
to another. Load balancing is effectively achieved by creat-
ing many virtual processes for each physical processor. The
system then can reconfigure parallel jobs at runtime based
on the arrival or departure of other jobs. However, recom-
pilation of a participating application is required, and small
modifications to the source code are necessary.

Sudarsan et al [16] improved on this work with ReSHAPE,
their framework for dynamic resizing and scheduling. Using
the provided resizing library and API, application users can
specify shared variables suitable for redistribution between
iterations of an outer loop. The points at which redistri-
bution is safe must be specified by the programmer. Be-
tween each iteration, a runtime scheduler makes decisions on
whether to expand or shrink a job based on node availability
and observed whole-application performance. The primary
disadvantage of ReSHAPE is that it requires applications to
be significantly rewritten to use their API.

2.2 Shared Memory Systems

Relatively little work has been done concerning multi-
programmed, multithreaded scheduling and the problem of
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SCAF v v v v v
RSM [13] X X X v v
DTiO [15] v v X (N/A) v
ERMIMA [8] X X X (N/A) v
APiICPC [7] X v v X v
Hood [3] X X X (N/A) v
PCIMSMP (18] v v X (N/A) v
Lithe [14] v v X (N/A) X
CDPAS [12] X X v X v

Table 1: Feature comparison of related implementations (ad hoc acronyms used for brevity)

oversubscription. Tucker et al [18] observed serious perfor-
mance degradation in the face of oversubscription on shared-
memory multiprocessors. They showed that by modifying a
version of the Brown University Threads package used on
an Encore Multimax, a centralized daemon can (strictly)
limit the number of running threads on the system to avoid
oversubscription by suspending threads when necessary. By
modifying only the system’s threads package, they were able
to support many programs using that threads package with-
out modification. However, their work has several disad-
vantages as compared to SCAF work: (1) the partitioning
policy does not take into account any runtime performance
measurements, but assumes all processes are scaling equally
well, and (2), the scheme’s ability to control the running
number of threads depends on the use of the specific paral-
lel paradigm where the programmer creates a queue of tasks
to be executed by the threads, and the assumption that the
application does not depend on having a certain number of
threads running. If an application does not meet both re-
quirements, then it may run incorrectly without warning.
This is a restriction of operating within a threads pack-
age where unsupported program behavior cannot always
be detected at runtime. By contrast, SCAF offers mod-
ified runtime libraries which provide higher-level abstrac-
tions. Unsupported program behavior which would imply
non-malleability is detected as it is requested, after which
SCAF avoids incorrect behavior by holding the number of
threads fixed for that running program.

Arora et al [2] designed a strictly user-level, work-stealing
thread scheduler which was implemented in the “Hood” [3]
prototype C++ threads library, and later in the Cilk-5 [6]
language’s runtime system. Work stealing is an approach in
which the programmer specifies all available parallelism in a
declarative manner, and then the implementation schedules
parallel work to a certain number of worker threads (using
deques, or simply work stealing queues) which are allowed
to “steal” work from one another in order to load balance.
The number of worker threads is usually equal to the num-
ber of available hardware contexts. The problem that Arora
solves is that when multiple processes are running, each do-
ing work stealing with multithreading, then having indepen-
dent worker threads for each process leads to more worker
threads than hardware contexts, leading to over-subscription
of the machine and poor performance. Their approach is to
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combine the work-stealing queues across applications, and
using a number of shared workers that does not result in
oversubscription. Their approach also accounts for serial
processes when avoiding oversubscription.

The approach used in Hood[3] has several differences with
the goals and capabilities of SCAF. First, Hood can only
reduce oversubscription when the parallel processes all uti-
lize work-stealing libraries. In contrast, SCAF reduces over-
subscription for any malleable parallel processes, regardless
of whether they use work stealing or not. Second, although
Hood and SCAF have the same goal of avoiding oversub-
scription, they do so using different mechanisms: SCAF re-
lies on malleable processes to reduce the number of threads,
whereas Hood has a specialized solution for work stealing
that relies on the work stealing programming model, with-
out taking advantage of malleability. Third, parallel threads
using Hood are not allowed to use blocking synchronization,
since Hood might swap out a lock-holding thread, which
would prevent other threads from making progress. SCAF
has no such restriction, since it reduces the number of threads
created, rather than allowing threads to be swapped out.
Fourth, the implementation of Hood is complex and difficult
since it has the same restriction as user processes, in that
Hood code must not use blocking synchronization, which
is simpler, but might cause tremendous slowdowns if the
kernel preempts a process which holds locks, causing other
workers to block. Fifth, Hood does not take any run-time
measurements, and hence cannot favor processes with bet-
ter scalability, whereas SCAF does, which helps to improve
overall system throughput by rewarding processes that scale
better.

Hall et al [7] performed experiments that emulate us-
ing a similar centralized daemon and modifications to the
Stanford SUIF auto-parallelizing compiler to dynamically
increase or decrease the number of threads at the start of a
parallel section based on system load and runtime measure-
ments of how effectively each parallel section uses its hard-
ware contexts. Kazi et al [12] adapted four parallel Java
applications to their own parallelization model and imple-
mentation so that each application reacts to observed sys-
tem load and runtime performance measurements in order
to increase or decrease its number of threads at runtime
before each parallel section. SCAF builds on ideas devel-
oped in these works. Compared to SCAF, their systems



have the following drawbacks: (1) they require recompila-
tion or modification of the programs in order to control the
number of threads; and (2) despite controlling compilation,
they are unable to avoid depending on a priori profiling for
making allocation decisions. SCAF works with unmodified,
SCAF-oblivious binaries, and collects all of its information
regarding efficiency during program execution, avoiding the
need for careful application profiling.

Suleman et al [17] describes a feedback-based system for
choosing the optimal number of threads for a single program
at runtime. Specifically, the system can decrease the num-
ber of threads used in order to improve efficiency in the face
of critical sections and bus saturation. This system requires
no a priori knowledge of programs, and utilizes a serialized
“training” phase to reason about serial and parallel perfor-
mance. However, the system does not attempt nor claim to
reason about multiprogramming, and it is unclear if it could
be adapted to do so. SCAF carefully avoids any serialization
and seeks primarily to handle multiprogramming.

More recently, Pan et al [14] created the “Lithe” system
for preventing hardware oversubscription within a single ap-
plication, or process, which composes multiple parallel li-
braries. This is a separate problem from the one discussed
in this paper. For example, consider a single OpenMP-
parallelized application which makes a call to an Intel TBB-
parallelized library function. The result is often significant
oversubscription: on a system with N hardware contexts,
the OpenMP parallel section will allocate N threads, and
then each of those threads will create another N threads
when Intel TBB is invoked, resulting in N? threads. The
Lithe system transparently supports this composition in ex-
isting OpenMP and/or Intel TBB binaries by providing a set
of Lithe-aware dynamically-loaded shared libraries. How-
ever, it should be made clear that Lithe makes no attempt to
coordinate multiple applications running concurrently, and
does not vary the number of threads which the application
is using at runtime. Lithe strictly avoids oversubscription
potentially resulting from composition of parallel libraries
within a single process. SCAF builds on Lithe’s idea of sup-
porting existing applications via modified runtime libraries,
but focuses instead on the composition of parallel libraries
used in separate, concurrently-executing executables.

McFarland [13] created a prototype system called “RSM,”
which includes a programming API and accompanying run-
time system for OpenMP applications. The application must
be modified to communicate with the runtime system via
API calls between parallel sections. Once recompiled, the
application communicates with the RSM daemon and de-
pends upon it for decisions regarding the number of threads
to load beginning with the next parallel section. The RSM
daemon attempts to make allocation decisions according to
observations of how much work is being performed by each
process at runtime. An application’s useful work is taken
to be the number of instructions retired per thread-seconds.
Processes are given larger allocations if they perform more
useful work. Unlike RSM, SCAF does not require program
recompilation. Further, SCAF compares efficiency observed
at runtime, considering the improvement in IPC' gained
by parallelization, whereas RSM only considers the absolute
IPC of each process.

In the interest of preserving existing standards and inter-

nstructions per cycle
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faces, Schonherr et al [15] modified GCC’s implementation
of OpenMP in order to prevent oversubscription. The im-
plementation supports applications without recompilation.
However, their system implements only a simple “fair” allo-
cation policy, where all applications are assumed to scale
equally well, and no runtime performance information is
taken into account.

Hungershofer et al [8] implements a runtime system and
daemon for avoiding oversubscription in SMP-parallel ap-
plications. Their system requires modifications to the appli-
cations involved, and provides a centralized server process
which controls thread allocation. However, their method for
maximizing accumulated speedup depends on significant of-
fline analysis of the applications for determining their speedup
behaviors, parallel runtime components, and management/
communication overheads.

2.3 Related Implementations

As part of related work, some solutions have been imple-
mented and explored. These are listed below in order of
their similarity to SCAF, and their features are enumerated
in Table 1.

1. RSM, [13]
2. Dynamic Teams in OpenMP, [15]

3. Efficient Resource Management for Malleable Applica-
tions, [8]

4. Adapting parallelism in compiler-parallelized code, [7]
5. Hood, [3]

6. Process control and scheduling issues for multiprogrammed

shared-memory processors, [18]
7. Lithe, [14]

8. A comprehensive dynamic processor allocation scheme
for multiprogrammed multiprocessor systems, [12]

3. DESIGN

3.1 System Overview

A system running SCAF consists of any number of mal-
leable processes, any number of non-malleable processes, and
the central SCAF daemon. The SCAF daemon is started
once, and one instance serves all users on the system. All
processes are SCAF-oblivious, and are started by users in the
usual uncoordinated fashion. Parallel binaries load SCAF-
compliant runtime libraries in place of the unmodified run-
time libraries — this does not require program modification
or recompilation. The SCAF-compliant libraries automati-
cally determine whether a process is malleable at runtime,
transparently to the user. A non-malleable process will pro-
ceed as usual, requiring no communication with the SCAF
daemon, while a malleable process will consult with the
SCAF daemon throughout its execution. A process which
loads no SCAF-compliant parallel runtime libraries is as-
sumed to be non-malleable and proceeds normally. The
SCAF daemon is responsible for accounting for the load in-
curred by any non-malleable processes. Specifically, hard-
ware contexts used by non-malleable processes must be con-
sidered unavailable to malleable processes.



3.2 Conversion from Time-sharing to Space-
sharing

By default, modern multi-user operating systems support
the execution of multiple multithreaded applications by sim-
ple time-sharing. Parallel processes are unaware of one an-
other, and each assume that the entire set of hardware con-
texts is available. In general, this results in poor efficiency
and performance unless the system is otherwise quiescent
(i-e., unloaded). As an extreme example, we found that
on a small 4-core Intel i5 2500k system running Linux 3.0,
the per-instance slowdown when running two instances of
the NAS NPB “LU” benchmark (each on 4 threads) was as
much as 8X when compared to using space sharing. With
the same hardware running FreeBSD 9.0 the penalty was
much greater, exhibiting a slowdown of more than 100X.
An investigation revealed that LU implements spinlocks in
userland which perform poorly without dedicated hardware
contexts[1]. Modifying the synchronization primitives used
by the system’s libgomp runtime library won’t help, since
the problematic synchronization lies in LU itself. Short of
perhaps modifying the application, the best solution is space
sharing.

The objective of the SCAF system is essentially to effect
space-sharing among all hardware contexts running on the
system, such that the operating system can schedule active
threads to idle hardware contexts and avoid the fine-grained
context-switching and load imbalances incurred by heavy
time-sharing.

3.3 Sharing Policies

In order to justify the policies which the SCAF daemon
implements, a brief discussion of possible policies is useful.
The following terminology is used:

Runtime of a process j: Tj

Speedup of a process j: S;

Threads allocated to process j: p;
Number of hardware contexts available: N
Number of processes running: k

Additionally, we define per-process “efficiency” as E = %
J

Minimizing the “Make Span”

In distributed memory systems, where users generally sub-
mit explicit jobs to a space-sharing job manager, the de facto
goal is to minimize the “make span,” which is the amount of
time required to complete all jobs.

However, the algorithms to solve this problem require pre-
cise information concerning not only the speedup behavior
of each job, but also accurate estimates of the total work
required until a job’s completion. This implies a batch-
processing model, possible for large distributed memory ma-
chines. On shared-memory systems, jobs are run without
prior intimation by the user, so the run-time system cannot
predict when applications will start, nor when a running ap-
plication will end. As a result, the make span cannot be
applied. Multithreaded processes which operate on a virtu-
ally infinite stream of input data are also not uncommon. In
this case the “make span” cannot be applied since processes
do not necessarily terminate.

Therefore, a new goal is required for a runtime system
such as SCAF. Given that the future system load cannot be
predicted by the run-time system, we seek an instantaneous
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metric which will allow SCAF to reason about the perfor-
mance of processes at runtime. Furthermore, the optimiza-
tion problem should be constrained such that the system’s
behavior is consistent with the expectations of an interactive
shared-memory machine.

Equipartitioning

When performing equipartitioning, fully “fair” sharing of the
hardware resources is achieved, without concern for how effi-
ciently said resources are being used. Each process occupies
an equal number of hardware contexts:

|3

The remaining (N mod k) hardware contexts are distributed
arbitrarily among (/N mod k) processes to ensure full utiliza-
tion.

The clear advantage to equipartitioning is simplicity. Over-
subscription and underutilization are avoided, and no a-
priori performance measurements are required. The problem
with equipartitioning is that it can result in low system ef-
ficiency. For example, given program A with Sa(pa) =1+
2(pa—1) and program B with Sp(ps) = 1+ £ (ps — 1), one
might intuitively want to allow the better-behaved program,
A, to use more hardware contexts than B since it makes bet-
ter use of each hardware context. However, equipartitioning
ignores observed speedup. SCAF does better because it re-
wards processes with more threads when they are observed to
scale well with more threads.

(1)

Maximizing the Sum Speedup

Another appealing approach is to maximize the total sum of
speedups achieved by the running processes. That is, given
a function S;(p;) describing the speedup of each process
with p; threads, maximize ), S;(p;) by choosing p; for all
j = 1...k. By maximizing the sum speedups, the average
speedup obtained per process is maximized. If allocations
such as p; are fixed throughout a program’s execution, then
this optimization problem only needs to be evaluated one
time, when the processes begin execution.

However, this quickly becomes a complex problem with
malleable processes where both the speedup function S, and
process allocations can effectively change over time. For ex-
ample, different parallel sections of code in the same pro-
gram may vary in how well they make use of hardware con-
texts. Even if we perform extensive testing and characteri-
zation of each parallel section in applications before runtime,
in general parallel efficiency may still vary unpredictably due
to inputs to the processes. Therefore, what is needed is a
system in which efficiency observed only at runtime is taken
into account.

Maximizing the Sum Speedup Based on Runtime Feed-
back

This is the approach used in SCAF. The goal is to partition
the available hardware contexts to processes quickly, adjust-
ing over time according to information available at runtime.
However, the details of such a system are not immediately
clear. When should allocation decisions be made? How do
we reason about speedups?

One can begin to imagine a system in which allocation
decisions are made per parallel region. However, these par-
allel regions often begin and end execution at a very high



frequency. Hence changing the thread allocation for each
parallel region is infeasible since the costs of thread initial-
ization and termination as well as allocation computation
would result in prohibitively high overhead. Ideally, the
allocation should change relatively infrequently and asyn-
chronously. However it should change after longer intervals
during an application’s run-time, since the application’s be-
havior may change over time, perhaps because it moves to a
different phase in the execution. As a corollary, since we can-
not possibly react to individual parallel regions, we should
reason about speedups in a per-process manner.

Consequent to the discussion above, SCAF clients must
maintain and report a single efficiency estimate per process.
It is the client’s responsibility to distill its efficiency infor-
mation down to this single constant, and refine it over time.
This is a nontrivial task for a pure runtime system since
capturing efficiency information requires information on the
serial performance of sections. SCAF’s lightweight serial
experiments, discussed in section 4.3.1, represent a solution
for gaining this information without incurring the penalty of
temporary serialization, which can be extremely expensive.

By default, lightweight experiments return instructions
per cycle (IPC) as measured by the PAPI [9] runtime li-
brary since this is generally available from hardware coun-
ters. PAPI returns the IPC achieved by the calling process
alone. However, experiments could return any metric which
is generally indicative of program progress. Floating point
operations completed per second (also available from PAPT)
may be a more reliable indicator of work if, for example,
it is known that the machine is primarily used for floating
point work. This is a simple compile-time option in SCAF.
However, while it is well understood that IPC is not an ideal
work performance metric, we choose to use it by default in
SCAF in order to avoid limiting SCAF’s usefulness to just
floating point workloads.

From a lightweight experiment, SCAF obtains an estimate
of the serial IPC of a section. This measurement is then used
later at runtime to compare against observed parallel IPC
measurements in order to compute the efficiency for that
specific parallel section and the process.

The efficiency estimate allows the central SCAF daemon
to reason about how efficiently each process makes use of
more cores relative to the other clients (processes). Specif-
ically, the daemon uses this efficiency estimate to build a
simple speedup model

Eip; —1

Si(p;)~1+C;1 i, wh C, +—
5 (p5) + C;logpj, where Cj logp;

)

where Ej; is the reported parallel efficiency from client j,
and pj is the previous allocation for j. This can be thought
of as the simplest form of curve fitting, where the only pa-
rameter to the curve is the constant factor C;. The model
describes a simple sublinear speedup curve specified by tu-
ples (number of threads, speedup) which goes through the
points (1,1) and (p}, E;p}), since S; = E;p;. More sophis-
ticated speedup models have certainly been developed [5,
4]. However, SCAF’s simple “fitting” is performed repeat-
edly, adjusting to each round of feedback from the client
and reacting dynamically rather than depending on a static
model. Such a static model would fail to react to changes in
scalability over time, and would require profiling the entire
application beforehand.
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The above model works well since C; can be adjusted
to approximate speedup curves of real applications using
only a single measurement representing recent efficiency. A
dynamic system which fits using multiple distinct speedup
points might overfit to the application’s current behavior,
and will react less quickly to changing behavior.

Next, we discuss exactly how the daemon arrives at such
allocations. Using the speedup model in equation 2, the
SCAF daemon is faced with the optimization problem

k k
mfx{ZSi(pi)p>0/\Zpi —N}

or, equivalently using equation 2,

k k
mgx{Zl+Cilogpip>O/\Zpi:N} (4)
i=1 i=1

Let Q; be defined as Q; Eci’c Since Zj C; and 1 are
3 Y :

constant quantities, we can equivalently express our opti-
mization problem as

k
a i log p;
mpx{;cz .

Next, we define P; to be 5, such that Zl P; = 1. Since
is constant, we can express our optimization problem as

k k
mgx{ZQilogPi P>0A\> P = 1}
i=1 i=1

We can obtain an equivalent minimization problem by tak-
ing the negative of the objective function. Then, we add the
constant quantity >, Q;log Q;, resulting in

k k k
min {;Qz log Q; — 2@1 log P;|P > OA;PZ' = 1}
(7
or, after combining sum terms,

k k
m};n{ZQilog%P>O/\ZPi:1} (8)
i=1 * i=1

If we now interpret @ and P as discrete probability distri-
butions, we see that equation 8 describes the relative entropy
of of @ with respect to P, or the Kullback-Leibler divergence
of P from ). This relative entropy is known to be always
non-negative, and equals zero only if Q = P. Therefore,
the single optimal solution is at P = . In other words,
pi = NQ;, or

®3)

()

k
p>o/\zpi=zv}
i=1
Di

N

(6)

b NG
' Zj C;

As per equation 9, the SCAF daemon sets the allocations
p by computing the vector C, then assigning p; to be the
fraction C;/ " C of N. Of course, the real allocation needs
to be an integer, so p is rounded down, and then any remain-
ing hardware contexts are distributed among the allocations
that were rounded down the most. Starvation is avoided by
ensuring that no process receives an allocation less than 1.

It can be shown that had our assumed speedup model
been linear instead of logarithmic, then the optimization
problem becomes immediately uninteresting: the optimal

9)
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Figure 1: Runtime feedback loop in SCAF’s partitioning
scheme

solution is always to allocate the entire machine to the single
process with the greatest speedup function slope, starving
other processes. This would be an undesirable allocation.
Figure 1 illustrates the feedback loop design in SCAF.
Consider a machine with 16 hardware contexts. Say process
foo is observed to scale fairly well, achieving an efficiency
of 2/3 on 12 threads, while baz is observed scaling poorly,
achieving an efficiency of only 3/8 on 4 threads. The SCAF
daemon, applying the speedup model and solving the opti-

mization problem, will arrive at Ctoo = 10g 12,C’baz = 31/0 2g_41
and compute new allocations pseo = [14.18] = 14, ppaz =

[1.82] + 1 = 2. If the resulting feedback indicates a good
match with the predicted models, then the same model and
solution will be maintained, and allocations will remain the
same. If one or more feedback items indicate a bad fit,
either due to a change in program behavior or poor mod-
eling, then a new model will be built using the new feed-
back information For example, if foo scales better than the

1+2=L 13 log 14 = 8.43X speedup anticipated by the previous
modi then a new model will be created accordingly, and
foo’s allocation will increase further.

4. IMPLEMENTATION

4.1 Integrating into Existing Systems

SCAF easily integrates into existing systems without re-
quiring modification or recompilation of programs by pro-
viding SCAF-aware versions of parallel runtime libraries.
Specifically, our implementation supports OpenMP programs
compiled with the GNU Compiler Collection as clients. Just
before execution begins, such programs load a shared ob-
ject which contains the OpenMP runtime, libgomp. A user
or administrator can specify that the SCAF-aware version
of the runtime should be used, making any subsequently
launched processes SCAF-aware. SCAF-aware and tradi-
tional processes may coexist without issue.

It is worth mentioning that the SCAF-aware implemen-
tation of libgomp is a one-time modification of the orig-
inal, involving only 3 lines of changed code and about 2
days of graduate student time. (Mostly spent understand-
ing libgomp.) These minor changes call into a 1ibscaf client
library which is designed to easily support development of
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additional runtime ports with similar ease. Intel’s 1ibiomp5
has also been ported. Currently, the libscaf library itself
consists of 622 lines of C.

Although SCAF supports all malleable OpenMP programs,
it is important to note that not all OpenMP programs are
malleable. Specifically, the OpenMP standard permits pro-
grams to request or explicitly set the number of threads in
use by the program. Programs that make use of this func-
tionality are assumed by SCAF to be non-malleable, since
they may depend on this number. Since SCAF implements
the client’s OpenMP interface, it can detect when a non-
malleable program requests this functionality, and simply
consider that application’s allocation to be fixed after that
point. As a result, SCAF is safe to use as a drop-in replace-
ment for GNU OpenMP on a system even if the system runs
a mixture of malleable and non-malleable OpenMP applica-
tions.

4.2 The SCAF Daemon

The system-wide SCAF daemon, scafd, communicates
with the SCAF clients using a portable software bus, namely
ZeroMQ [10]. For the sake of portability, the SCAF daemon
is implemented entirely in userspace. While the SCAF dae-
mon could run on a separate host, it incurs a small enough
load that this is not necessary. The SCAF daemon has three
jobs: 1) monitor load on hardware contexts due to uncon-
trollable processes, 2) maintain the hardware context parti-
tioning using runtime feedback from the clients, and 3) ser-
vice requests from SCAF clients for their current hardware
context allocation.

Uncontrollable (non-malleable) process load is monitored
through the operating system’s facilities. For example, on
FreeBSD and Linux, scafd monitors the number of kernel
timer interrupt intervals (i.e., “ticks” or “jiffies”) which have
been used by processes which it does not know to be SCAF-
compliant processes and uses this to compute the number
of hardware contexts which are effectively occupied. This
is the same general, inexpensive method used by programs
like top.

The partitioning of hardware contexts to processes is per-
formed only periodically at a tunable rate, completely asyn-
chronously from clients’ requests. The partitioning is per-
formed as described in section 3.3.

Requests from SCAF clients, received over the software
bus, arrive in the form of a message containing the client’s
most recent efficiency metric. This information is stored im-
mediately but not acted upon immediately, since it arrives
at a high rate. In order to respond to the requests at the
same rate, the daemon periodically evaluates the stored set
of client efficiencies and computes a new set of hardware con-
text allocations. This scheme allows the daemon to respond
immediately to any requests by returning the latest com-
puted allocation, which may not have incorporated the very
latest reported client measurements yet. Other than the
initial message a client sends to announce itself to scafd,
this is the only kind of communication necessary between
the clients and the daemon. The rate at which the dae-
mon computes new allocations is tunable, and defaults to 4
Hz, while the rate at which clients check in is variable but
generally much higher than 4 Hz.

4.3 The 1ibgomp SCAF Client Runtime
The meat of the SCAF implementation lies in the 1ibscaf
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client library, but for the sake of clarity it is described here
in the context of the libgomp client runtime which uses it.
The clients perform three interesting functions: 1) recording
baseline serial IPC using lightweight serial experiments, 2)
recording parallel IPC, and 3) computing parallel efficiency
relative to the experiment results as the program runs.

4.3.1 Lightweight Serial Experiments

In SCAF, a lightweight serial experiment allows the client
to estimate the serial performance of a parallel section of
code. This allows the client to then compute its recent
efficiency, and provide a meaningful metric to the SCAF
daemon. By default, the client will perform an experiment
only the first time it executes each parallel section, thus re-
ducing its overhead, although the user is able to tune the
client so that it re-runs the experiment periodically. Experi-
ments proceed as follows: given an allocation of N hardware
contexts to run parallel section A on for the first time, the
libscaf will recognize that it has no serial experiment result
for A and is due for an experiment run. Provided a function
pointer to the parallel section, 1ibscaf forks a new process
which will run A serially on a single hardware context con-
currently with the original parallel process. Although the
experimental process is a separate proper process, it must
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share the allocation of N hardware contexts. To accom-
plish this, libscaf simply reduces the number of hardware
contexts on which the non-experimental process runs on to
N —1. The end result is an experimental process running on
1 thread for the sake of measuring its achieved IPC, while
the original program still makes progress as usual with N —1
threads. Note that the serial execution of the section is not
timed, since it may be interrupted early. Instead, its IPC is
recorded, since this will still be meaningful. Figure 2 illus-
trates the lightweight serial experiment technique.

Experiment duration Assuming some speedup is be-
ing obtained, the serial experiment process would take longer
to complete than the parallel process doing the same work.
We cannot afford to wait that long. Thus, we end the ex-
perimental process as soon as the parallel process finishes
the section. The achieved IPC of the serialized section is
recorded in order to compare it to parallel IPC measure-
ments.

Maintaining correctness Since there will be two in-
stances of the original section in execution, care must be
taken to avoid changing the machine’s state as perceived by
its users. The forked experimental process begins as a clone
of the original parallel process just before the section of in-
terest. The new process’s memory is a copy of the original
process’s, so there is no fear of incorrectly affecting the orig-
inal process through memory operations. The only other
means a process has to affect system state is through the
kernel, by way of system calls. Fortunately, ptrace(2) on
platforms such as FreeBSD and Linux provides a mecha-
nism for intercepting and denying system calls selectively.
On Solaris, the proc(4) filesystem can be used to the same
effect. Therefore, the experimental process runs until an un-
safe system call is requested. For example, a read from a file
descriptor is allowed. A series of writes may be allowed, but
only if the write is redirected to /dev/null. (Nowhere.) A
series of writes followed by a read is not allowed, as the read
may be dependent on the previous writes, which did not ac-
tually occur. Fortunately, parallel sections tend to contain
few system calls, and terminating experiments due to un-
safe system calls is the exception rather than the norm. For
example, none of the NAS NPB benchmarks contain such
unsafe system calls in their parallel sections.

Performance of fork(2) On modern UNIX or UNIX-
like OSs, fork only copies the page table entries, which point
to copy-on-write pages. This avoids the penalty associated
with allocating and initializing a full copy of the parent’s
memory space. As a result, fork is still more expensive
than thread initialization, but is not prohibitively expensive
when used for serial experiments.

4.3.2 Computing Efficiency

The SCAF runtime calculates an effective efficiency in or-
der to report it back to the SCAF daemon before each par-
allel section. The client receives an allocation of N threads,
which it uses in order to compute the next parallel section.
This allocation is considered fixed across any serial execution
that occurs between parallel sections. In the OpenMP port,
the client constantly collects five items in order to compute
its reported efficiency:

1. Tparatie © Wall time spent inside the last parallel section

2. Pparallel : the per-thread IPC recorded in the last par-
allel section



3. Tuerial : wall time spent after the last parallel section
executing serial code

4. S : an identifier for the last parallel section, generally
its location in the binary

5. N : the thread allocation used since the start of the
last parallel section

Here it is important to note that Tyerial and Tparaliel refer to
time spent in different work; in particular, non-parallelized
OpenMP code and explicitly parallelized OpenMP code, re-
spectively, and not to time spent performing the same work.
That is, Tserial is not related to any lightweight serial exper-
iment measurements.

The client then can compute the following efficiencies,
given that it has the serial IPC P(S) of S from a completed
lightweight experiment:

ParaeNPS speedu
Eparallel < Pparallel/P(S) _ Zparall ;V/ ( ) ~ P ~ p
speedup
Egerial < l/N ~ T

Since processes report efficiencies only at the beginning of
each parallel section, thus Tparaniel + Tserial is the time since
the last efficiency report to the SCAF daemon. Efficiency
since the last report is then estimated as

Eserial . Tserial + Eparallel . Tparallel
Tserial + Tparallel

Finally, before being reported to the SCAF daemon, this
efficiency value is passed through a simulated RC low-pass
filter, with adjustable time constant RC"

Erecent

E < a- Erecent + (1 - Oé) . E, with

o = (Tserial + Tparallel)/(RC + Tserial + Tparallel)~

This is a simple causal filter which requires only one pre-
vious value to be held in memory. This keeps the efficiency
rating somewhat smooth, but at the same time does not
punish a process for performing poorly in the distant past.
The hope is that the recent behavior of the program will be
a good predictor for its behavior in the near future.

5. EVALUATION

In this section, we present results from experiments de-
signed to show the effectiveness of the SCAF system. First,
results are provided intended to demonstrate that the over-
heads imposed by the SCAF runtime and daemon are neg-
ligible. Next, we provide a series of results which demon-
strate SCAF’s ability to improve the efficiency of a multi-
programmed system.

SCAF has been evaluated on two machines representing
distinct platforms. The first, “openwks01,” is a dual-socket
Intel Xeon E5410 system with 8 GB main memory running
RedHat Enterprise Linux 6 and GCC 4.4.7. The second sys-
tem, “t2,” is a single-socket Sun UltraSparc T2 system with
32GB main memory running Solaris 10 and GCC 4.6.3. The
Xeon system, with only 8 cores total, represents a typical
small SMP server. The Sparc system, with 64 hardware
contexts, represents a more advanced scenario in that many
more allocation outcomes are possible.
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5.1 SCAF-aware GNU OpenMP Port Perfor-
mance

Since SCAF runtimes work by strictly adding logic at
runtime, we provide non-multiprogrammed speedups of the
NAS NPB benchmarks with and without SCAF to demon-
strate that this overhead is not significant. Benchmarks IS
and DC are omitted because they are not malleable without
modification. (SCAF detects this and does not attempt to
control them.) The remaining 8 benchmarks are tested. The
nature and size of these benchmarks is largely irrelevant as
we do not compile or modify them; they are treated as black
boxes. Figure 3 shows that SCAF is generally nearly as
fast as the unmodified implementation, with no noticeable
slowdown. In general SCAF will be slightly slower than an
unmodified runtime due to experiments, which occasionally
consume =+ of the system’s threads. Note, however, that

N
as hardware grows more parallel, % becomes smaller and

SCAF’s overhead becomes lower. Furthermore, this exper-
imentation is done dynamically only once per parallel sec-
tion, resulting in very low overhead on programs which run
parallel sections repeatedly.

The worst-case scenario for SCAF overhead is realized in
the EP benchmark on a small SMP, as seen in Figure 3a.
The EP benchmark consists primarily of a single large fork-
join section which executes exactly once. Since it is difficult
to detect this in a purely run-time system, SCAF executes
this section on 7 of 8 threads. The other thread performs a
serial experiment in anticipation of future executions of the
section, which do not exist in EP. As a result, SCAF incurs
a slowdown of about % = 0.875. We do not include EP in
the remaining experiments in this paper since although it is
malleable, it cannot be profitably exploited by our current
implementation of SCAF. A slightly more advanced imple-
mentation will support benchmarks such as EP by modifying
the OpenMP scheduler to occasionally consult with SCAF
while distributing iterations dynamically. However, this is
unimplemented for now, leaving 7 benchmarks amenable to
SCAF out of 10 total benchmarks in the NAS suite.

5.2 Improvements in System Efficiency

In this section, we offer results which demonstrate the ad-
vantages of deploying SCAF on a multiprogrammed system.
We compare three configurations: 1) the unmodified GNU
OpenMP implementation, 2) simple equipartitioning, and
3) the fully dynamic SCAF implementation, as described in
this paper. In practice, the unmodified configuration is by
far the most common since it requires no setup and is readily
available. The second configuration, equipartitioning, rep-
resents the state of the art which does not require a priori
testing. SCAF is the configuration presented in this paper,



which also needs no a priori profiling.

5.2.1 Multiprogramming with NPB Benchmark Pairs

For each platform and configuration we evaluated all 21
pairs of 7 NAS benchmarks. In each multiprogramming pair,
program 1 first begins execution, and then after 10 seconds
program 2 begins execution. This series of events could eas-
ily occur when two users are interactively using a remote
machine, launching processes while unaware of one another.
The 10 second delay was introduced in order to avoid unre-
alistic precisely-simultaneous starts, but our results are not
sensitive to this delay. Problem sizes for each benchmark
were chosen such that solo runtimes would be as similar
as possible. The average equipartitioned experiment length
was 271.6 seconds, with 73% of that time spent multipro-
gramming.

Figure 4a shows all pairwise results on the Xeon-based
“openwks(01.” For 7 benchmarks, 21 pairs exist. The pair
(ft.C,mg.C) is missing, as openwks01 did not have enough
main memory to run both simultaneously. Here, SCAF
shows an improvement over the fastest of unmodified and
equipartitioning configurations in 14 out of 20 pairs (70%),
with an average improvement of 15% in those cases. The
maximum improvement seen is in the pair (sp.B,lu.B), where
SCAF yields an improvement of about 53% over equiparti-
tioning.

Figure 4b shows all 21 pairwise results on the UltraSparc
T2-based “t2.” In this scenario, we see that SCAF offers
an improvement in 12 out of 21 pairs (57%), with an aver-
age improvement of 15% in those cases. In 3 cases, namely
(cg.C,bt.B), (cg.C,lu.B), and (cg.C,sp.B), SCAF offers an
improvement of about 30% over the fastest equipartitioning
or unmodified result.

We note that in some cases, such as (ft.C,bt.B) in Fig-
ure 4a, using IPC as an approximation of work can mis-
lead SCAF to make non-optimal choices. Other times, such
as some cases involving ft.B in Figure 4b, SCAF’s simple
strictly-increasing speedup model leads it to non-optimal de-
cisions: on a T2, ft.B actually slows down beyond 36 cores.
However, the performance implications in these cases are
small. The fact that not all benchmark pairs benefit from
SCAF should not be considered an indictment against it
— indeed there is a long history of research into techniques
that benefit only a class of applications?. With this in mind,
benefiting 50-70% of application pairs significantly is quite
good.

5.2.2  Detailed 3-Way Multiprogramming Scenario

The previous section (5.2.1) focuses on 2-way multipro-
gramming, but SCAF can handle greater numbers of clients.
The severity of oversubscription seen in the unmodified con-
figuration only increases with increased multiprogramming.
In this section, we focus on a particular 3-way multipro-
gramming experiment on the UltraSparc T2. When run by
itself, the first benchmark, cg.C, scales extremely well on a
T2, with a maximum speedup near 50X on 64 threads. The
other two benchmarks, sp.B and lu.B, scale more modestly,
with maximum speedups of 25-30X on 64 threads.

In this experiment, cg.C begins at time 0, then sp.B 10 sec-
onds later, and lu.B after an additional 10 seconds. We ex-

2e.g., faster garbage collectors only benefit benchmarks with
heap data, and among those, only those with significant
garbage — however garbage collection is still worthwhile.
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Figure 4: 2-way multiprogramming results with 7 NAS NPB
benchmarks

ecuted this workload for each of the 3 configurations. Table
5a summarizes the results, while Figure 5b plots log output
of the SCAF daemon (scafd) after running this scenario.

In Table 5a, we see that the unmodified configuration
manages a mediocre sum speedup of 31.5X due to severe
oversubscription. Each benchmark uses 64 threads. As
the third benchmark begins, the SunOS scheduler is left
to timeshare 192 CPU-bound threads to 64 hardware con-
texts. This severe oversubscription results in lackluster per-
formance from all three benchmarks due to context switch-
ing and hardware contention.

The equipartitioning configuration manages to avoid over-
subscription and as a result completes all three benchmarks
faster. At first, cg.C runs on all 64 threads. After 10 sec-
onds, sp.B begins and is given 32 of cg.C’s threads. Finally,
after lu.B begins, sp.B and lu.B are allocated 21 threads
while cg.C is allocated 22 threads. lu.B finishes first, leav-
ing cg.C and sp.B each 32 threads. Finally, cg.C finishes,
leaving sp.B to complete with all 64 threads. Here, the sum
speedup increases to 40.7X due to a lack of oversubscription.

With SCAF, we see improved overall performance. Figure
5b shows SCAF’s allocations throughout the experiment.
Initially, cg.C runs on all 64 threads. After 10 seconds,
sp.B begins and is briefly allocated approximately 29 of the
threads. At 20 seconds, sp.B begins as well. Very quickly,
SCAF’s begins to observe that cg.C is scaling particularly
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Configuration Process Runtime Speedup > Speedup
Unmodified CG 435.9s 13.1 31.5

SP 474.6s 9.6

LU 507.3s 8.8
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Figure 5: 3-way multiprogramming example

well, resulting in a significant allocation of 52 threads. Due
to this large allocation, cg.C finishes after only 172.2 sec-
onds, after which sp.B and lu.B are allowed to expand to
use the full 64 contexts. At this point, sp.B and lu.B are ob-
served to have similar performance, with sp.B having shown
better results while cg.C was running. As a result, SCAF
allocates about 44 threads to sp.B and the remaining 20 go
to lu.B. Finally, at 384 seconds sp.B finishes and lu.B is left
to complete on all 64 threads. The achieved sum speedup is
59.3X, an 88% and 45% improvement over the unmodified
and equipartitioning configurations, respectively.

6. FUTURE WORK

We are investigating extending this work in three ways:

Porting additional runtime systems.

We intend to implement SCAF for additional runtime sys-
tems beyond GNU OpenMP, such as Open64’s OpenMP
runtimes and Intel’s TBB library. Although most of the
runtime changes will be very similar, some differences will
arise for TBB. TBB makes use of a dynamic work-stealing
model, which may result in design changes when modifying
TBB to support changing the number of threads used at run-
time and require additional methods for estimating parallel
efficiency. However, OpenMP is the de-facto standard for
shared memory programs today, and is far more prevalent.

Expanding results to additional hardware platforms.
SCAF has been primarily tested on Intel x86_64 SMPs.

We are investigating several more platforms, including Tilera’s

mesh-connected grid processors, SGI UV 2000 NUMA sys-
tems with 512-1024 cores, and Intel Xeon Phi 5110P copro-
cessors with 60 cores and 240 threads. Preliminary ports of
SCAF to these platforms have been created and are promis-
ing. SCAF and its techniques are intended to become more
useful and effective on more parallel systems such as these.

Periodic lightweight experiments.

One advantage of having a method for collecting serial
IPC at runtime is that it allows the measurement to be
repeated periodically or on certain triggers. Some long-
running processes may have serial IPC which is very de-
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pendent upon input. In these cases where inputs can vary
greatly, it may not even be possible to gather comprehensive
information on serial performance even we are able to run
tests ahead of time. A SCAF system which can re-run serial
experiments would be able to overcome these difficulties.

7. CONCLUSION

This work has shown that neither a priori testing, nor sim-
ple equipartitioning is generally satisfactory. We argue that
none of the related work has caught on in practice, due to the
significant inconvenience to the user of performing profiling
or testing ahead of time, or because they require changes to
the program or re-compilation. We have presented a drop-
in system, SCAF, which includes a technique for collecting
equivalent information at runtime, paying only a modest
performance fee and enabling sophisticated resource man-
agement without recompilation, modification, or profiling of
programs. We believe that such resource management will
be important as hardware becomes increasingly parallel, and
as more parallel applications become available.
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